科学家成功解码果蝇孤雌生殖的基因过程

科学家成功解码果蝇孤雌生殖的基因过程为了取得突破性进展,剑桥大学的研究人员在六年时间里对22万多只果蝇进行了研究。为了寻找导致昆虫"孤雌生殖"的基因,研究小组研究了另一种果蝇--丝光果蝇的两个品系。其中一个品系只能进行有性繁殖,而另一个品系却能进行孤雌生殖。通过比较这两个品系的遗传密码,科学家们找出了哪些基因与孤雌生殖有关。他们打开或关闭了相应的基因,使之与黑腹果蝇相匹配,并取得了成功。受试果蝇突然可以进行无性繁殖,尽管它们只能生出几乎是其父母克隆的雌蝇。在研究中,果蝇等待了大约40天(约占其生命的一半)来寻找雄性配偶,当没有雄性配偶时,它们就进行无性繁殖。有趣的是,转基因虫子的所有女儿也都保留了孤雌生殖的能力,不过只有1%到2%的女儿有这种行为,而且是在没有雄性出现的情况下。否则,它们照常交配和生育。剑桥大学研究员、论文第一作者亚历克西斯-斯珀林博士说:"我们首次证明可以在动物身上设计出处女产子--看到孤独的雌性果蝇产生一个能够发育到成年的胚胎,然后重复这个过程,真是令人兴奋。"研究人员说,在可以进行有性繁殖的动物中,孤雌生殖的情况极为罕见,但有时也会在长期与世隔绝的雌性动物园动物身上看到。不过,当一些物种面临生存压力时,它们会进化出一种无性繁殖模式。事实上,斯帕林计划利用这项工作,进一步研究为什么世界各地的昆虫--尤其是害虫的孤雌生殖现象开始增多。斯佩林说:"如果昆虫害虫的处女生育继续存在选择压力,最终将导致它们只能以这种方式繁殖。"这可能会成为农业的一个真正问题,因为雌虫只生产雌虫,所以它们的传播能力会加倍。斯珀林和她的团队还指出,虽然他们的研究可能是首创,但可能无法应用到其他动物身上。这是因为黑腹果蝇被用于研究已经有一个多世纪了,而且其遗传密码也非常清楚。事实上,通过对该物种的研究,人们可能已经了解了延长寿命、了解零重力对身体的影响、追踪微塑料对健康的影响,以及为消除创伤记忆提供了一种可能的方法。该研究成果已在《当代生物学》(CurrentBiology)杂志上发表。...PC版:https://www.cnbeta.com.tw/articles/soft/1373735.htm手机版:https://m.cnbeta.com.tw/view/1373735.htm

相关推荐

封面图片

科学家成功诱导果蝇进行无性繁殖

科学家成功诱导果蝇进行无性繁殖研究人员已经确定了这些苍蝇在没有父亲的情况下繁殖时开启或关闭的基因。资料来源:何塞-卡萨尔和彼得-劳伦斯该研究的资深作者是加州理工学院(Caltech)生物学和生物工程研究教授大卫-格洛弗(DavidGlover)。这项研究由剑桥大学格洛弗实验室前博士后、加州理工学院短期访问学者亚历克西斯-斯珀林(AlexisSperling)与田纳西大学的合作者共同完成。黑腹果蝇(常用的实验室模式生物)有性繁殖(上图)和孤雌生殖(下图)时的染色体成像。图片来源:D.Glover提供了解孤雌生殖对于大多数动物来说,繁殖都是有性的,即雌性卵子与雄性精子受精。孤雌生殖是一种无性繁殖,是卵子在不需要雄性精子受精的情况下发育成胚胎的过程。虽然后代不是其母亲的完全克隆,但它们的基因非常相似,而且总是雌性。某些种类的苍蝇、蝗虫和鸡实际上具有在有性生殖和孤雌生殖之间切换的能力。如果周围没有雄性,转而进行无性生殖可能是一种生存策略,可以使物种继续生存下去。果蝇的基因改造虽然实验室中常见的果蝇黑腹果蝇通常不会进行无性生殖,但事实上,一种在仙人掌上繁殖的遥远物种--丝光果蝇(Drosophilamercatorum)却具有通过孤雌生殖进行繁殖的能力。在剑桥大学博士后学者亚历克西斯-斯珀林(AlexisSperling)的领导下,研究小组研究了侩果蝇的基因组,确定了孤雌生殖的基础基因。然后,他们在黑腹蝇中设计了相应的基因;实验蝇因此获得了无性生殖的能力。格洛弗说:"对我们来说,发现启动少量基因开关就能让未经交配的黑腹果蝇自行产生有活力和可育的后代,就像它们的远亲丝光果蝇一样,确实令人惊叹。了解这种能力的普遍性非常重要,因为许多作物害虫都能以无性方式繁殖。现在,我们希望了解黑腹果蝇这种细胞过程的分子机制。"托马斯-亨特-摩根(ThomasHuntMorgan),他于20世纪30年代在加州理工学院首次将黑腹蝇蛆发展成模型系统。图片来源:加州理工学院档案馆提供黑腹果蝇现在是世界上常见的实验室动物,它于20世纪30年代由诺贝尔奖获得者托马斯-亨特-摩根(ThomasHuntMorgan)在加州理工学院首次培育成模式生物。摩根于1928年来到加州理工学院,建立了现在的加州理工学院生物学和生物工程部。...PC版:https://www.cnbeta.com.tw/articles/soft/1379593.htm手机版:https://m.cnbeta.com.tw/view/1379593.htm

封面图片

中国科学家首次捕获全新长寿基因

中国科学家首次捕获全新长寿基因“通过全球寿命基因数据库比对,我们发现该长寿基因是国际上第8个具有广泛延长动物寿命的新基因。”论文通讯作者、浙江大学农业与生物技术学院研究员沈星星说。“远程”操控线粒体的核基因线粒体主要负责细胞的能量供应,是我们细胞内的重要成员。随着年龄的增长,线粒体功能往往会逐渐衰退。鉴于线粒体与衰老、神经退行性疾病、代谢性疾病、心血管疾病以及肿瘤等多种疾病的发生紧密相关,如何保持线粒体功能的稳态至关重要。“线粒体是一种很特别的细胞器,根据内共生理论,线粒体源自一种古老的α-变形菌,这种细菌被一个原始的真核细胞吞噬,但并未被消化,而是与宿主细胞形成了共生关系”论文第一作者、浙江大学博士生陶妹说,“线粒体内部至今仍然保存着属于自己的DNA,但同时,线粒体也受到细胞核内DNA的调控。线粒体与细胞核之间建立的相互交流和协作的稳定关系,就叫协同演化。”“我们可以把这种协同演化模式理解为,有两辆汽车以相同的速度并行行驶在道路上,彼此的速度变化紧密同步,一方的加速或减速会立即反映在另一方上。”沈星星解释,“但以往科学家的目光大多集中在线粒体本身,我们则是转换视角,将关注点放在与线粒体协同演化的细胞核上。”于是,研究团队综合了演化生物学、计算生物学、功能基因组学等多个交叉学科,系统性地挖掘“远程”操控线粒体进化的核基因。结果发现,有75个核基因与线粒体基因展现出显著的协同演化模式,它们表现出了各种不同的功能,包括端粒维持、核糖体生物发生、线粒体功能和DNA修复,而这些功能都与生命衰老和疾病显著相关。研究团队还挑选了其中四个核基因——CG13220,CG11837,Nop60B和CG11788,在果蝇体内进行了基因活性降低的实验。结果显示,与对照组相比,这四个基因的活性降低均导致了线粒体形态的异常。“延年益寿”全新基因沈星星打了一个比方,如果把生物体看成一台计算机,线粒体相当于电池,而细胞核就是CPU。“一台计算机的待机时间不仅与电池容量大小有关,也与CPU处理策略有关。”研究人员提出了一个关键问题:改变这些核基因的活力是否会影响动物的寿命?让研究团队惊喜的是,他们在四个核基因中发现了一个特别的存在——CG11837,不仅能够影响线粒体形态,它的活力还与动物的寿命长短存在显著的正相关性。为了寻找可靠证据,研究人员首先在六种不同的动物中进行了CG11837基因敲降实验,包含褐飞虱、果蝇、斯氏按蚊和秀丽隐杆线虫等。结果显示,在所有研究的动物中,降低CG11837基因的活力就会显著缩短它们的寿命,幅度在25%至59%之间。敲降基因会缩短寿命,反之,激活基因是否可以延长寿命?为此,研究人员又在果蝇和线虫中进行了该基因的过表达实验。结果显示,这两种动物的寿命均显著延长,幅度达到12%至35%。这一发现促使研究人员思考,该基因是否也能延长人类的寿命?于是,他们对人类离体细胞进行了实验,发现激活CG11837基因能够提升抗衰老能力30%。“这一系列研究证实了CG11837基因在动物中具有广泛的长寿效应。”沈星星兴奋表示。对于这项研究,《自然—衰老》三位匿名评审专家指出:该研究方法独特且新颖,从线粒体基因组—核基因组之间的共进化角度出发,打破了传统思维上的局限,挖掘到功能非常保守的新长寿基因,对衰老研究领域具有非常重要的科学价值和实践意义。而在谈到该研究成果的应用前景时,除了可以研发基于CG11837基因的药物和治疗方法,来延长人类健康寿命,主要从事昆虫分子生物学研究的沈星星还提到,在农业领域,该基因可以成为控制害虫的新靶点,进而减少对化学农药的依赖,实现环境友好的绿色防控;在公共卫生领域,可以通过干扰该基因表达来缩短蚊虫等传播疾病媒介的寿命,从而降低疟疾、登革热等传染病的传播风险,为蚊媒疾病防控和公共卫生安全提供新的解决方案。相关论文信息:https://doi.org/10.1038/s43587-024-00641-z 敲低CG11837基因后,黑腹果蝇脂肪体中线粒体的形态变得异常,呈现碎片化和聚集成簇的特征。图中蓝色为细胞核,绿色为多个线粒体,线粒体包围形成的黑色孔为脂肪滴。沈星星课题组供图...PC版:https://www.cnbeta.com.tw/articles/soft/1433670.htm手机版:https://m.cnbeta.com.tw/view/1433670.htm

封面图片

科学家成功对活体动物的单个细胞进行基因改造

科学家成功对活体动物的单个细胞进行基因改造研究人员开发出一种利用CRISPR-Cas技术同时修改成年动物细胞中多个基因的技术,这种技术创造出一种类似马赛克的模式,从而简化了遗传疾病的研究。这种方法揭示了对遗传疾病22q11.2缺失综合征的新认识,并有可能在未来减少动物实验的数量。资料来源:苏黎世联邦理工学院由巴塞尔苏黎世联邦理工学院生物系统科学与工程系生物工程教授兰德尔-普拉特领导的研究人员现在开发出了一种方法,可以大大简化和加快实验动物的研究:利用CRISPR-Cas基因剪刀,他们可以在一只动物的细胞中同时改变几十个基因,就像打马赛克一样。虽然每个细胞中改变的基因不超过一个,但一个器官中的不同细胞会以不同的方式发生改变。这样就可以对单个细胞进行精确分析。这样,研究人员就能在一次实验中研究多种不同基因变化的影响。根据最近发表在《自然》(Nature)杂志上的一份报告,苏黎世联邦理工学院的研究人员首次成功地将这种方法应用于活体动物,特别是成年小鼠。此前,其他科学家已经针对培养细胞或动物胚胎开发出了类似的方法。为了"告知"小鼠细胞CRISPR-Cas基因剪刀应该破坏哪些基因,研究人员使用了腺相关病毒(AAV),这是一种可以靶向任何器官的传递策略。他们制备了病毒,使每个病毒粒子都携带破坏特定基因的信息,然后用携带不同基因破坏指令的混合病毒感染小鼠。这样,他们就能关闭一个器官细胞中的不同基因。在这项研究中,他们选择了大脑。利用这种方法,苏黎世联邦理工学院的研究人员与日内瓦大学的同事一起,获得了人类一种罕见遗传疾病--22q11.2缺失综合征--的新线索。这种疾病的患者表现出许多不同的症状,通常被诊断为精神分裂症和自闭症谱系障碍等其他疾病。在此之前,人们知道这种疾病是由一个包含106个基因的染色体区域引起的。人们还知道这种疾病与多种基因有关,但不知道哪些基因在疾病中起作用。在对小鼠的研究中,研究人员重点研究了这一染色体区域中同样在小鼠大脑中活跃的29个基因。在每只小鼠的脑细胞中,他们修改了这29个基因中的一个,然后分析了这些脑细胞的RNA图谱。科学家们能够证明,其中三个基因在很大程度上导致了脑细胞的功能障碍。此外,他们还在小鼠细胞中发现了与精神分裂症和自闭症谱系障碍相似的模式。在这三个基因中,有一个已经为人所知,但另外两个以前并不是科学界关注的焦点。普拉特研究小组的博士生、该研究的第一作者安东尼奥-桑蒂尼亚说:"如果我们知道疾病中哪些基因的活性异常,我们就可以尝试开发补偿这种异常的药物。"这种方法也适用于研究其他遗传疾病。桑蒂尼亚说:"在许多先天性疾病中,多个基因都在起作用,而不仅仅是一个。精神分裂症等精神疾病也是如此。现在,我们的技术可以让我们直接在完全生长的动物体内研究这类疾病及其遗传原因。每次实验修改的基因数量可以从目前的29个增加到几百个。"研究人员现在可以在活体生物中进行这些分析,这是一个很大的优势,因为细胞在培养过程中的行为与它们作为活体的一部分的行为是不同的。另一个优势是,科学家只需将AAV注射到动物的血液中即可。AAV有多种不同的功能特性。在这项研究中,研究人员使用了一种能进入动物大脑的病毒。根据要研究的内容,也可以使用针对其他器官的AAV。苏黎世联邦理工学院已经为这项技术申请了专利,现在,研究人员希望将其作为"肽"研究的一部分。...PC版:https://www.cnbeta.com.tw/articles/soft/1385987.htm手机版:https://m.cnbeta.com.tw/view/1385987.htm

封面图片

“再见”基因:果蝇在细胞凋亡过程中使用的蛋白质与哺乳动物类似

“再见”基因:果蝇在细胞凋亡过程中使用的蛋白质与哺乳动物类似RIKEN遗传学家在果蝇中发现了一种许多教科书上说不存在的蛋白质。这种蛋白质检测细胞中的压力,并在它们承受过度压力时让它们走上自我毁灭的道路。我们体内受损的细胞通过启动称为细胞凋亡的程序性细胞死亡的自杀过程来自我消除。这个过程对我们的健康和确保细胞不会癌变至关重要。这一过程背后的分子级联反应非常复杂,但它是由属于BH3-only蛋白质家族的一种蛋白质触发的。这些蛋白质感知细胞中的压力,并且存在于包括哺乳动物和线虫在内的许多动物中。然而,在过去的二十年里,在实验室中以果蝇为代表的所有昆虫都被认为缺乏BH3-only蛋白。相反,他们被认为依赖于不同的细胞死亡程序。但是现在,RIKEN生物系统动力学研究中心的SaKanYoo及其同事有一个惊人的发现,他们发现果蝇确实含有一种仅含有BH3的蛋白质。他们以日语中的“告别”一词命名了为其编码的基因sayonara。SaKanYoo和YukoIkegawa。图片来源:2023RIKEN当该团队使sayonara基因在果蝇翅膀中表达时,他们观察到发生细胞凋亡,导致翅膀萎缩(图1)。根据Yoo的说法,该基因隐藏在众目睽睽之下。“我们没有做任何花哨的事情,仅仅是使用了人类BH3-only蛋白的基因序列,并核对了果蝇的基因组是否具有相似的序列——这是在果蝇中寻找与人类基因相对应的基因的一种非常常见的方法。”Yoo怀疑果蝇基因组的不完整测序可以解释为什么研究人员在20年前没有在果蝇中发现该基因。“当时基因组测序还不完整,所以科学家们可能无法找到该基因,过了一段时间他们就放弃了。”果蝇缺乏BH3-only蛋白随后被载入教科书。但对Yoo来说,这是一个有趣的挑战。“我认为检查它可能会很有趣,而仅仅几个小时后,我就发现了一些看起来很像BH3-only蛋白质的东西。”这一发现表明,果蝇,可能还有其他昆虫,在细胞凋亡方面和人类以及其它物种并没有太大不同。“这意味着果蝇并不例外或有点奇怪,”Yoo说。“相反,我们发现它们具有与人类和线虫相似的调节细胞凋亡的机制。”该团队现在正在探索BH3-only蛋白被激活后究竟会发生什么。他们还在研究其他昆虫是否含有BH3-only蛋白。...PC版:https://www.cnbeta.com.tw/articles/soft/1365787.htm手机版:https://m.cnbeta.com.tw/view/1365787.htm

封面图片

科学家发现嗅觉和化学感应进化过程中的意外转折

科学家发现嗅觉和化学感应进化过程中的意外转折"想象一下,在一个世界里,成熟的桃子对一只苍蝇来说尝起来和闻起来都像辛辣的醋,而对另一只苍蝇来说却像一阵夏日的气息,"这项研究的主要作者、伦敦玛丽皇后大学遗传学、基因组学和基础细胞生物学讲师罗曼-阿圭略博士解释说。"我们的研究表明,这不仅是可能的,而且实际上很常见。"研究小组分析了六个不同果蝇物种的五个关键气味检测组织的基因表达模式。这种综合方法使他们能够比以往任何时候都更深入地研究嗅觉的分子基础。一个令人惊讶的发现是"稳定选择"的普遍存在,这种力量使大多数基因在不同世代的表达水平保持不变。然而,在这片稳定的海洋中,研究人员发现数千个基因的表达发生了重大变化,形成了不同苍蝇物种独特的嗅觉景观。化感组织转录组的进化。图片来源:GwénaëlleBontonou等人/《自然通讯阿圭略博士说:"这就像是在一片千篇一律的汪洋大海中发现了隐藏的多样性岛屿。基因表达的这些变化告诉我们新气味、新敏感性的进化,甚至是利用气味导航世界的新方法。"这项研究还揭示了两性之间耐人寻味的差异。在果蝇和许多其他动物中,雌雄常常通过不同的嗅觉镜头来感受世界。研究人员在黑腹果蝇的前肢发现了令人惊讶的过量雄性偏向基因表达,这表明这些前肢在雄性特异性气味检测中起着至关重要的作用。这些发现为了解性别差异如何演变以及它们如何影响动物行为开辟了令人兴奋的新途径。它对感官系统如何进化的一般原理提供了宝贵的见解,为了解包括人类在内的其他动物如何感知其化学环境提供了线索。编译来源:ScitechDaily...PC版:https://www.cnbeta.com.tw/articles/soft/1416345.htm手机版:https://m.cnbeta.com.tw/view/1416345.htm

封面图片

这种动物全员雌性 窃取同类精子繁衍 科学家都懵了

这种动物全员雌性窃取同类精子繁衍科学家都懵了亚马逊莫莉鱼,图源:UniversityofTexas随着探索的继续,全员雌性的脊椎动物也积累得越来越多,但是在所有这类动物中,没有一个像钝口螈属的一个全员雌性的谱系蝾螈来的奇怪。钝口螈属有十几个物种,它们普遍分布在北美五大湖区域,全员雌性的这个谱系和其它物种一起生活,但是它会窃取自己同属蝾螈的基因来繁殖,这在所有已知动物是独一无二的繁殖方式,以至于生物学家不得不专门为它创造一个新术语——“kleptogenesis”(基因窃取,我看到有些地方翻译盗癖生殖)。基因窃取者钝口螈是两栖动物,它们的配对方式与青蛙有点像,雄性蝾螈会把自己的精子包裹在一个白色“精囊”里,并将其产在池塘里的树叶、树枝等物体上。然后,雌性根据自己的需求选择最符合标准的“精囊”,并放入自己的泄殖腔中,受精在体内完成,产卵并孵化出后代。这种配对方式给了那些全员雌性谱系的钝口螈机会,它们可以很容易拾取到其它同属物种的遗传物质,但是它们并不会完全利用这些精子。图:钝口螈的精囊很早以前,科学家就了解到,其它钝口蝾螈的精子只是刺激了这些雌性蝾螈产卵,并不会对后代的遗传信息产生影响,它们的后代是通过孤雌生殖的方式复制出来的,所以后代依然全部是雌性。随着研究的继续,科学家发现,通常情况下它们确实只会像其它全员雌性动物一样复制自己,但是有极少数的情况,它们会窃取同属物种雄性的染色体。十几年前(2009年),科学家第一次在这个全雌性谱系蝾螈的细胞中发现了其它同类物种的染色体,这让科学家吃惊不已。全雌性的钝口螈谱系通常拥有三组基因或者称为三倍体(其它正常同类是两组),这是它们只有雌性且孤雌生殖的原因,因为无法完成减数分裂产生生殖细胞(这种谱系通常是两种正常的不同物种杂交突变结果)。然而,有一些个体——也就是我们前面提到的极少数情况,它们拥有更多组基因,而多出的基因组就是来自其它雄性同类的基因。在加入其它雄性同类的基因时,它们的选择其实非常多样化(如下图),可以是加入几种不同雄性的基因组——发现的个体最多加了5个其它物种雄性的基因,当然也可以是一种;除添加之外,它们还可以丢弃自己一组基因,并替换上其它雄性的基因组。图:紫色显示的是其它同属蝾螈的基因组这种钝口螈如何完成这种生殖方式还是一个谜,但是它们并不会一直把其它钝口螈的基因保留在自己的谱系中,通常使用几代就抛弃。另一方面,对于常见的多倍体生物而言,通常会关闭多出的基因组的表达,但是这种钝口螈不会,它们不但获得了其它雄性同类的基因,还将一些基因表达出来了,所以它们是真正的“基因窃贼”。图:这四种钝口螈是它们的窃取对象占据栖息地90%的种群关于这种全雌性的钝口螈,我们前面提到的都是一个谱系,而不是一个物种,这是因为这些蝾螈很难将它们归类为单一物种,因为它们的基因组太多样了,违反了常规物种的定义。但是,这个谱系通过它们这种生殖方式,在自己的栖息地相当成功,你可能想象不到,钝口螈属有十几个物种,而它们的栖息地90%个体都是来自这个全雌性谱系。有性生殖是昂贵的,它消耗时间、精力和资源,所以那些全员雌性或者单性的物种,往往有一个天然的优势——能够高效地占据栖息地。图:大理石纹螯虾不知道大家听说过大理石纹螯虾没,它们也是一种三倍体全雌性的动物,它们通过孤雌生殖的方式不停复制自己,以至于在整个亚欧大陆快速泛滥成灾。然而,任何单性生物都不可能长久,有科学家推算,这类物种不可能存在超过10万年。这是因为这类生物有两个主要的障碍(两个假说):一个是物种必须继续进化才能在环境、疾病和寄生虫的压力下生存,而无性生殖只能提供极其低效的进化动力,这个被称为红皇后假说。图:泛滥成灾的大理石纹螯虾我们现在别看大理石纹螯虾很嚣张,因为体型巨大,所到之处其它同类完全无法与之抗衡,它们可以迅速占据栖息地并泛滥成灾,但是哪天出现一种专门针对它们的疾病,它们可能就会在极短的时间内消失。另一个是无性生殖会让有害的突变不断积累,最终让整个种群覆灭,这是因为它们本质就是复制自己,任何有害的突变都无法从种群中完全剔除。正是因为这些限制的存在,复杂的单性生物很罕见,很多其实都是像大理石纹螯虾一样是最近才进化(突变)出来的。然而,钝口螈属的这个全雌性谱系可能已经存在600万年了,毫无疑问,“基因窃取技术”是它们成功的关键。它们通过“盗窃”基因来增加自己后代基因的多样性,从而提高生存能力,再通过“抛弃”基因来稳定住单性生殖的优势。这是独一无二的生殖方式,是自然界让人惊喜的部分,真的只有我们想象不到,没有生物完成不了。...PC版:https://www.cnbeta.com.tw/articles/soft/1422337.htm手机版:https://m.cnbeta.com.tw/view/1422337.htm

🔍 发送关键词来寻找群组、频道或视频。

启动SOSO机器人