约翰霍普金斯大学工程师开发出深度学习技术 可帮助个性化癌症治疗

约翰霍普金斯大学工程师开发出深度学习技术可帮助个性化癌症治疗细胞毒性CD8+T细胞通过受体结合新抗原识别癌细胞。图片来源:OpenAI的DALL-E2生成的图像在7月20日发表在《自然-机器智能》(NatureMachineIntelligence)杂志上的一项研究中,来自约翰霍普金斯大学生物医学工程系、约翰霍普金斯大学计算医学研究所、约翰霍普金斯大学金梅尔癌症中心和布隆伯格~金梅尔癌症免疫疗法研究所的研究人员表明,他们的深度学习方法(名为BigMHC)可以识别癌细胞上能引起肿瘤细胞杀伤性免疫反应的蛋白质片段,这是了解免疫疗法反应和开发个性化癌症疗法的重要一步。"癌症免疫疗法旨在激活患者的免疫系统来消灭癌细胞,"生物医学工程、肿瘤学和计算机科学教授、计算医学研究所核心成员雷切尔-卡钦(RachelKarchin)博士说。"这一过程的关键步骤是免疫系统通过T细胞与细胞表面的癌症特异性蛋白片段结合来识别癌细胞。"引起这种肿瘤杀伤性免疫反应的癌症蛋白片段可能源自癌细胞基因构成的变化(或突变),称为突变相关新抗原。每个患者的肿瘤都有一组独特的此类新抗原,这些新抗原决定了肿瘤的异质性,换句话说,决定了肿瘤构成与自身的不同程度。科学家可以通过分析癌症基因组来确定患者肿瘤具有哪些与突变相关的新抗原。确定哪些新抗原最有可能触发杀死肿瘤的免疫反应,科学家就能开发出个性化的癌症疫苗或定制的免疫疗法,并为患者选择这些疗法提供依据。然而,目前鉴定和验证触发免疫反应的新抗原的方法耗时费钱,因为这些方法通常依赖于劳动密集型的湿实验室实验。由于新抗原验证需要大量资源,因此可用于训练深度学习模型的数据很少。为了解决这个问题,研究人员通过一个称为迁移学习的两阶段过程训练了一组深度神经网络BigMHC。首先,BigMHC学习识别呈现在细胞表面的抗原,这是适应性免疫反应的早期阶段,可以获得许多相关数据。然后,BigMHC通过学习后期阶段(T细胞识别)进行微调,而这一阶段的数据很少。通过这种方式,研究人员利用海量数据建立了一个抗原呈递模型,并对该模型进行了改进,以预测免疫原性抗原。研究人员在一个大型独立数据集上对BigMHC进行了测试,结果表明它在预测抗原呈递方面优于其他方法。他们还对研究共同作者、布隆伯格~金梅尔癌症免疫疗法研究所(Bloomberg~KimmelInstituteforCancerImmunotherapy)肿瘤学副教授凯莉-史密斯(KellieSmith)博士的数据对BigMHC进行了进一步测试,发现BigMCH在识别可触发T细胞反应的新抗原方面明显优于其他七种方法。"BigMHC在预测免疫原性新抗原方面具有出色的精确性,"Karchin说。"为最有可能获益的患者子集量身定制癌症免疫疗法是一项迫切的、尚未得到满足的临床需求,BigMHC可以揭示驱动肿瘤异质性的癌症特征,从而触发有效的抗肿瘤免疫反应。"该研究的共同作者、胸部肿瘤学生物库主任、约翰霍普金斯大学分子肿瘤委员会和精准肿瘤学分析领导者、金梅尔癌症中心肿瘤学副教授Valsamo"Elsa"Anagnostou博士说。该团队目前正在扩大工作范围,在几项免疫疗法临床试验中测试BigMHC,以确定它是否能帮助科学家从成千上万的新抗原中筛选出最有可能引起免疫反应的抗原。这项研究的第一作者本杰明-亚历山大-阿尔伯特(BenjaminAlexanderAlbert)说:"我们希望BigMHC能为癌症免疫学家提供指导,帮助他们开发可用于多名患者的免疫疗法,或开发可增强患者免疫反应以杀死癌细胞的个性化疫苗。阿尔伯特现在是加州大学圣迭戈分校的一名博士生。"Karchin和她的团队相信,BigMHC和类似的基于机器学习的工具可以帮助临床医生和癌症研究人员高效、低成本地筛选大量数据,从而开发出更加个性化的癌症治疗方法。Karchin说:"深度学习在临床癌症研究和实践中发挥着重要作用。"...PC版:https://www.cnbeta.com.tw/articles/soft/1376727.htm手机版:https://m.cnbeta.com.tw/view/1376727.htm

相关推荐

封面图片

MIT评论:癌症疫苗似乎有望取得成功

MIT评论:癌症疫苗似乎有望取得成功几十年来,药物开发商一直致力于开发疫苗来帮助人体免疫系统对抗癌症,但没有取得太大成功。但过去一年的可喜结果表明该战略可能正在达到一个转折点。这些疗法最终会奏效吗?Moderna和BioNTech正在开发的个性化癌症疫苗是针对每位患者的特定癌症量身定制的。研究人员收集了患者的一块肿瘤和健康细胞的样本。他们对这两个样本进行测序并进行比较,以识别肿瘤特有的突变。然后将这些突变输入人工智能算法,选择最有可能引发免疫反应的突变。这些新抗原共同形成了一种肿瘤的“罪犯素描”,这是一幅帮助免疫系统识别癌细胞的粗略图片。新抗原被置于mRNA链上并注射到患者体内。从那里,它们被细胞吸收并转录成蛋白质,这些蛋白质在细胞表面可以引发免疫反应。——(节选)

封面图片

科学家头颈部癌症免疫疗法的潜在新目标

科学家头颈部癌症免疫疗法的潜在新目标一张彩色扫描电子显微照片描绘了一个单一的人类口腔鳞癌细胞,这是最常见的头颈癌形式最近发表在PNASNexus上的这一结果意味着癌症免疫疗法可能有了新的目标和策略,迄今为止,这些疗法对某些头颈部癌症产生了不一致的结果。端粒酶逆转录酶(TERT)是一种在大约85%的肿瘤细胞中大量产生的抗原。抗原是一种毒素或其他物质,能激起对该物质的免疫反应。癌症患者中的TERT尤其如此。但是TERT的表达对肿瘤内适应性免疫的调控的影响并不了解。在这项新研究中,共同资深研究作者、加州大学圣地亚哥分校医学院教授、加州大学圣地亚哥分校Moores癌症中心免疫学实验室主任MaurizioZanetti博士及其同事使用了癌症基因组图谱的RNA测序数据。共同第一作者、加州大学圣地亚哥分校医学院副教授HannahCarter博士说:"我们的数据是通过对TheCancerGenomeAtlas这一宝贵的公共肿瘤测序数据集进行有针对性的计算再分析而出现的,该数据集由免疫学的核心原则指导。"具体来说,Zanetti、Carter和他们的合作者研究了11种实体瘤类型,以调查TERT表达与渗入肿瘤微环境的B和T细胞之间的潜在相互作用。B细胞是免疫反应细胞,对抗原(从细菌和病毒到毒素)产生抗体。T细胞是免疫细胞,针对并摧毁体内已被抗原占据或变成癌症的细胞。但是B细胞也向T细胞提出抗原,在这个过程中触发它们的激活。研究人员在四种癌症类型中发现了TERT表达与B细胞和T细胞之间的正相关关系,其中头颈部鳞状细胞癌的关联性最强,这种疾病发生在口腔、鼻腔和喉咙的粘膜上。他们发现,发现这种关联的病人与更有利的临床结果有关。这些发现表明B和T淋巴细胞在肿瘤内从新形成淋巴结构,而TERT是一种潜在的连接抗原。头颈部鳞状细胞癌(HNSCC)是第六种最常见的恶性肿瘤。它占所有头颈部癌症的90%。该病的主要原因是长期吸烟、饮酒和感染高风险类型的人类乳头瘤病毒。在美国,每年大约有66,000个新的头颈部癌症诊断,15000人死亡。HNSCC的死亡率很高。大约50至60%的病人在诊断后一年内死亡;总的五年生存率(诊断后五年内活着的病人)仅为50%。对无法通过手术切除的HNSCC肿瘤的治疗包括化疗、放疗和免疫检查点治疗,尽管只有一小部分患者从免疫检查点治疗中受益。Zanetti说,新的发现指出了治疗HNSCC的潜在新方法,特别是对结果较差的高风险患者。"癌症免疫疗法是指通过利用患者自身的免疫系统来对抗恶性肿瘤来治疗患者。"Zanetti说:"理想情况下,我们应该加强患者体内已经存在的机制。""目前的重点是新抗原(当肿瘤DNA发生某些突变时在癌细胞上形成的蛋白质)和免疫检查点抑制剂(如单克隆抗体等药物),这些药物针对并阻止有助于保护癌细胞免受T细胞攻击的行动。但这些疗法只是部分有效,而且只对某些类型的癌症有效。我们的研究结果提供了证据,证明高的TERT表达是在肿瘤内产生高水平的B和T细胞的关键信号,这表明了开发肿瘤内免疫疗法以加强已经存在的抗肿瘤免疫的新途径"。...PC版:https://www.cnbeta.com.tw/articles/soft/1356455.htm手机版:https://m.cnbeta.com.tw/view/1356455.htm

封面图片

实验性疫苗对癌症进行重新编程以发起免疫疗法攻击

实验性疫苗对癌症进行重新编程以发起免疫疗法攻击免疫疗法是一种新兴的治疗方法,它涉及为免疫系统增压以更好地对抗癌症,并取得了一些非常有希望的早期结果。最常见的一种免疫疗法是通过从病人身上取出T细胞,对它们进行编程以识别特定的癌症抗原,并让它们在体内释放,以猎杀带有这些抗原的癌症。问题是,这需要一定程度的猜测,以确定哪些抗原对每个病人最有用。因此,在新的研究中,斯坦福大学医学院的科学家们开发了一种方法,教导T细胞识别更广泛的抗原,增加病人的免疫系统成功攻击其癌症的机会。诀窍是将癌细胞转化为巨噬细胞,巨噬细胞是一种抗原提呈细胞(APC),可以教T细胞寻找什么。该研究的资深作者RaviMajeti说:"我们假设,也许被重新编程为巨噬细胞的癌细胞可以刺激T细胞,因为这些APC携带着它们来自癌细胞的所有抗原"。为了测试这个想法,研究人员诱导小鼠的白血病细胞转化为APCs。果然,对照组的小鼠成功清除了它们的癌症。更妙的是,该疫苗策略似乎能够长期发挥作用,防止疾病复发。Majeti说:"当我们第一次看到有免疫系统工作的小鼠清除白血病的数据时,我们被震惊了。我们无法相信它的效果如此之好。更重要的是,研究表明,免疫系统记住了这些细胞教给它们的东西。当我们在最初的肿瘤接种100多天后将癌症重新引入这些小鼠体内时,它们仍然有强烈的免疫反应来保护它们。"接下来,该团队在患有三种不同类型实体肿瘤--纤维肉瘤、乳腺癌和骨癌的小鼠身上测试了这项技术。结果并不像对白血病那样有效,但仍然显示出积极的效果。最后,研究人员用取自人类患者的细胞进行了实验。结果,来自人类白血病细胞的APCs似乎成功地教导来自同一病人的T细胞应该寻找什么。这表明该方法最终可以应用于人类,但仍需做更多工作。Majeti说:"重新编程的肿瘤细胞可以导致小鼠对癌症的持久和系统性攻击,并且与人类患者的免疫细胞有类似的反应。未来我们也许能够取出肿瘤细胞,将其转化为APC,并将其作为治疗性癌症疫苗回馈给患者。最终,我们可能能够将RNA注入患者体内,并转化足够的细胞,以激活免疫系统对抗癌症,而不必首先取出细胞。在这一点上,那是科幻小说,但那是我们感兴趣的方向"。该研究发表在《癌症发现》杂志上。...PC版:https://www.cnbeta.com.tw/articles/soft/1347939.htm手机版:https://m.cnbeta.com.tw/view/1347939.htm

封面图片

肿瘤化身 - 个性化癌症治疗的新方法

肿瘤化身-个性化癌症治疗的新方法该研究小组使用了从患者身上提取的未经治疗的癌组织中提取的类器官。图片来源:UNIGE然后将这些实验的结果编译成一个模型。这种方法为针对不同类型的癌症和许多其他疾病的个性化和增强治疗铺平了道路。该研究结果最近发表在《实验与临床癌症研究杂志》上。每年有超过140万人受到影响,其中700000人死亡,结直肠癌是世界上诊断出的第三大癌症,也是仅次于肺癌的第二大致命癌症。它的治疗主要基于称为FOLFOXIRI的化疗组合。然而,其有效性因患者而异,并且其副作用显着。它还会导致大多数患者出现进行性耐药。如何在不引起大量副作用的情况下为每位患者测试和优化化疗组合?由UNIGE理学院药学院副教授、肿瘤血液学转化研究中心(CRTOH)成员PatrycjaNowak-Sliwinska领导的UNIGE团队通过使用类器官找到了解决方案。这些在实验室中创建的三维细胞结构再现了某些组织和器官的结构和功能。类似器官“这些微组织本身并不是器官,”UNIGE理学院药学院博士后研究员、该研究的第一作者GeorgeM.Ramzy解释说。“它们有一些重要的生理差异,例如没有血管或神经系统。然而,它们是测试治疗的非常有效的模型。”研究人员从日内瓦大学医院(HUG)未经治疗的患者身上采集的癌组织开始。通过从这些组织中培养干细胞——逐渐分裂并组织成三维结构——科学家们能够从每个患者的肿瘤中产生类器官或类肿瘤。“然后,我们在不知道它们的遗传背景的情况下,在这些模型上测试了不同的药物,”PatrycjaNowak-Sliwinska解释道。这种个人背景在很大程度上决定了治疗的有效性。因此,研究人员从头开始,将他们的整个研究建立在实时观察细胞反应的基础上。快速、有效和定制化这些肿瘤化身暴露于目前临床使用的七种治疗方法。根据每个患者类器官的反应,调整这些治疗的组合和剂量。所有结果都经过数学建模,以预测每个类器官(即每个患者)的最佳疗效和剂量。这些测试进行了两周。“这是一个临床相关的时间框架:这是目前医学界在诊断后选择治疗所需的时间框架,”PatrycjaNowak-Sliwinska说。由于UNIGE研究实验室和EPFL之间的合作,研究人员随后能够确定每位患者肿瘤的阶段以及疾病进展中涉及的主要突变。该信息对于更好地了解每种药物组合的选择和作用机制是相关且必不可少的。“每个病人都是不同的,需要特定的治疗,”PatrycjaNowak-Sliwinska补充道。这种没有动物模型的创新方法刚刚获得了专利。它为多种癌症提供个性化治疗,也为心血管或病毒性疾病等其他疾病提供个性化治疗。肾癌的试验正在进行中。对于研究团队来说,下一步将是研究来自经过预处理的结肠癌肿瘤的类器官,因此这些肿瘤会显示出耐药迹象。目的还在于缩短优化过程的持续时间。...PC版:https://www.cnbeta.com.tw/articles/soft/1362697.htm手机版:https://m.cnbeta.com.tw/view/1362697.htm

封面图片

根除实体瘤:麻省理工学院的疫苗为T细胞癌症治疗提供助力

根除实体瘤:麻省理工学院的疫苗为T细胞癌症治疗提供助力通过改造T细胞来消灭癌细胞已在治疗某些类型的癌症(如白血病和淋巴瘤)方面取得了成功。然而,它对实体瘤的治疗效果并不理想。不成功的原因之一是T细胞只针对一种抗原(肿瘤上发现的一种靶蛋白);如果一些肿瘤细胞不表达这种抗原,它们就能逃脱T细胞的攻击。麻省理工学院的研究人员现在找到了克服这一障碍的方法,他们使用一种疫苗来增强工程T细胞(即嵌合抗原受体(CAR)T细胞)的反应,同时还能帮助免疫系统产生靶向其它肿瘤抗原的新T细胞。在对小鼠的研究中,研究人员发现这种方法更有可能根除肿瘤。Underwood-Prescott教授是麻省理工学院生物工程系和材料科学与工程系的教授,同时也是麻省理工学院Koch癌症综合研究所以及MGH、麻省理工学院和哈佛大学Ragon研究所的成员。Irvine是这项研究的资深作者,研究报告于7月5日发表在《细胞》(Cell)杂志上。论文的第一作者是LeyuanMa,她曾是科赫研究所的博士后,现任宾夕法尼亚大学医学院病理学和实验医学助理教授。工程T细胞美国食品和药物管理局已经批准了几种治疗血癌的T细胞疗法。这些疗法以CAR-T细胞为基础,CAR-T细胞被设计成显示能识别癌细胞上特定抗原的受体。为了尝试将这种治疗方法用于胶质母细胞瘤(一种脑癌),研究人员设计了靶向表皮生长因子受体突变版本的CAR-T细胞。然而,并非所有胶质母细胞瘤细胞都表达这种抗原,当受到CAR-T细胞攻击时,一些胶质母细胞瘤细胞会通过停止产生靶抗原来做出反应。在2019年的一项研究中,Irvine和他的同事通过在给小鼠注射工程T细胞后不久向其注射疫苗,增强了CAR-T细胞对胶质母细胞瘤的有效性。这种疫苗携带CAR-T细胞靶向的相同抗原,被淋巴结中的免疫细胞吸收,CAR-T细胞在淋巴结中接触到这种疫苗。在这项研究中,研究人员发现,这种疫苗促进不仅有助于工程CAR-T细胞攻击肿瘤,而且还有另一个意想不到的效果:它有助于产生靶向其它肿瘤抗原的宿主T细胞。这种被称为"抗原扩散"的现象是可取的,因为它能产生T细胞群,这些T细胞群协同工作,可以完全消灭肿瘤并防止肿瘤再生。Irvine说:"这恰恰可以帮助应对实体瘤的抗原异质性,因为如果引导宿主T细胞攻击其他抗原,它们也许就能进来杀死CAR-T细胞无法杀死的肿瘤细胞。"免疫增强在他们的新研究中,研究人员希望探索额外的T细胞反应是如何被激活的。他们使用了2019年研究中相同类型的CAR-T细胞和相同的疫苗,CAR-T细胞被设计为靶向突变的表皮生长因子受体。研究中的小鼠接种了两剂疫苗,间隔一周。研究人员发现,在这些增强的小鼠中,CAR-T细胞发生了新陈代谢变化,从而增加了γ干扰素的产生,而γ干扰素是一种细胞因子,有助于刺激强烈的免疫反应。这有助于T细胞克服肿瘤的免疫抑制环境,肿瘤通常会关闭附近的T细胞。当CAR-T细胞杀死表达靶抗原的肿瘤细胞时,宿主T细胞(而非工程CAR-T细胞)遇到了这些肿瘤细胞的其他抗原,刺激宿主T细胞靶向这些抗原并帮助消灭肿瘤细胞。研究人员发现,如果没有宿主T细胞的反应,即使CAR-T细胞消灭了大部分原始肿瘤细胞,肿瘤也会重新生长。出现这种情况的原因是,接受CAR-T细胞治疗的肿瘤细胞通常会停止产生工程细胞靶向的抗原,从而躲避这些细胞的攻击。根除肿瘤研究人员随后在目标抗原水平不同的肿瘤小鼠中测试了他们的方法。他们发现,即使在只有50%的肿瘤细胞表达靶抗原的肿瘤中,通过CAR-T细胞和宿主T细胞的联合作用,仍能消灭约25%的肿瘤。靶抗原含量较高的肿瘤的成功率更高。当80%的肿瘤细胞表达CAR-T细胞靶向的抗原时,约80%的小鼠的肿瘤被消灭。这项研究中使用的技术已授权给一家名为ElicioTherapeutics的公司,该公司正致力于开发这项技术,以便在患者身上进行潜在测试。在这项研究中,研究人员重点研究了胶质母细胞瘤和黑色素瘤,但他们认为这项技术也有可能用于治疗其他类型的癌症。Irvine说:"原则上,这应该适用于任何你已经生成了靶向CART细胞的实体瘤。"研究人员还在研究如何调整CAR-T细胞疗法,使其能够用于攻击尚未发现靶向抗原的肿瘤。...PC版:https://www.cnbeta.com.tw/articles/soft/1370277.htm手机版:https://m.cnbeta.com.tw/view/1370277.htm

封面图片

变革癌症治疗:CRISPR 技术开辟了一条新道路

变革癌症治疗:CRISPR技术开辟了一条新道路当癌细胞面临免疫系统的压力时,它们会主动减少自己的MHCI类分子,这样癌细胞就可以躲起来,不引起免疫系统的主要抗癌细胞CD8+T细胞的注意。日本和美国的研究人员在北海道大学和德克萨斯农工大学健康中心的小林幸一教授以及密苏里大学NEXTGEN精准健康捐赠教授、BondLSC首席研究员PauldeFigueiredo博士的领导下,开发出了强力增加癌细胞中MHCI类数量的技术。这项研发成果发表在《美国国家科学院院刊》(ProceedingsoftheNationalAcademyofSciences)杂志上,这是一种增强免疫系统检测和消除癌细胞能力的新方法。小林说:"我们的发现有可能改变我们治疗癌症的方法。这能够使特异性地靶向免疫反应基因,激活免疫系统对抗癌细胞,为那些对目前的免疫疗法有抵抗力的人带来希望。"与未经治疗的癌症相比,TRED-I系统能显著缩小小鼠模型中癌症的体积。资料来源:《美国国家科学院院刊》,孙新等。2024年1月29日小林和他的研究小组之前发现了一种名为NLRC5的基因,它可以调节MHCI类的水平。他们进一步发现,NLRC5是通过关闭癌症中DNA上的分子开关(即DNA甲基化过程)来降低MHCI类水平的。他们的技术被称为TRED-I(TargetedReactivationandDemethylationforMHC-I)系统,能够恢复NLRC5基因的DNA甲基化,并进一步激活NLRC5,从而提高癌症中MHCI类的水平,而不会产生严重的副作用。deFigueiredo说:"我们迫切需要这样的抗癌新模式,因为我们几乎没有办法对抗某些癌症类型。这是一种全新的方法,能参与其中我感到很幸运。"TRED-I在动物癌症模型中进行了测试。它大大缩小了肿瘤的大小,并提高了细胞毒性CD8+T细胞的活性。与现有的免疫疗法结合使用时,TRED-I能显著提高疗效。出乎意料的是,TRED-I系统对距离原始靶向肿瘤较远的肿瘤也有效,显示出治疗转移性癌症的潜力。"这项工作是我们团队过去十年研究的结晶,"小林总结道。"能将我们的研究成果转化为潜在的临床应用,我们感到非常高兴。我们相信,经过进一步改进,TRED-I系统可以为癌症治疗做出重大贡献。"进一步的研究将侧重于在癌症患者体内直接输送TRED-I系统。这类药物可以提高免疫系统消除癌症的功效,还能改善对现有疗法的反应。编译来源:ScitechDaily...PC版:https://www.cnbeta.com.tw/articles/soft/1421061.htm手机版:https://m.cnbeta.com.tw/view/1421061.htm

🔍 发送关键词来寻找群组、频道或视频。

启动SOSO机器人