科学家发现抗癌药物对细胞器的意外影响

科学家发现抗癌药物对细胞器的意外影响荧光图像显示细胞核(紫色)中有正常的核小体(亮橙色),周围有肌动蛋白丝(深蓝色)。图片来源:斯塔沃斯医学研究所格顿实验室塔玛拉-波塔波娃提供核糖体生物生成是最基本、最耗能的细胞过程之一,它是制造所有蛋白质的细胞机器的形成过程。对于癌细胞来说,这一过程至关重要。斯托沃斯医学研究所(StowersInstituteforMedicalResearch)最近在《eLife》杂志上发表的一项研究筛选了1000多种现有的抗癌药物,以评估它们如何影响核仁的结构和功能,核仁是制造核糖体的无处不在的细胞器。"所有细胞都必须制造蛋白质才能发挥作用,因此它们必须制造核糖体,而核糖体本身也是蛋白质复合物,"第一作者、研究员詹妮弗-格顿(JenniferGerton)博士实验室的研究专家塔玛拉-波塔波娃(TamaraPotapova)博士说,"在癌细胞中,核糖体的生产必须处于超速状态,以补偿需要更多蛋白质的高增殖率。"正常核仁及其在化疗药物抑制转录细胞周期蛋白依赖性激酶后的极端应激状态图解。图片来源:斯托沃斯医学研究所马克-米勒和塔玛拉-波塔波娃提供核小体是细胞核的一个特殊部分,它容纳核糖体DNA,核糖体RNA的产生和核糖体的组装主要在这里进行。核小体的外观差异很大,是这一过程总体健康状况的直观指标。因此,研究小组找到了一种利用这种变化的方法,并询问化疗药物如何影响核小体,从而导致核小体应激。格顿说:"在这项研究中,我们不仅评估了抗癌药物如何改变核小体的外观,还确定了导致核小体形状不同的药物类别。这使我们能够根据核小体的外观创建一个分类系统,成为其他研究人员可以使用的资源。"由于癌症的特征是无节制的增殖,现有的大多数化疗药物都旨在减缓这种增殖。"我们的逻辑是,观察这些药物是否有意或无意地影响核糖体的生物生成,以及影响的程度如何,"波塔波娃说。"打击核糖体的生物生成可能是一把双刃剑--它会损害癌细胞的生存能力,同时改变正常细胞的蛋白质生产。"不同的药物会影响癌症生长的不同途径。那些影响核糖体生成的药物会诱发不同的核极应激状态,表现为容易看到的形态变化。然而,核极应激很难测量。荧光图像显示抑制转录酶或细胞周期蛋白依赖性激酶(CDK)的药物诱导的核极应激。左上角显示的是一个正常细胞,两种重要的核仁蛋白(品红色和绿色)和DNA(蓝色)都被染色。其余面板显示CDK或转录抑制药物对核小体的影响。图片来源:斯塔沃斯医学研究所格顿实验室塔玛拉-波塔波娃提供波塔波娃说:"这是阻碍这一领域发展的问题之一。细胞可以有不同数量、不同大小和形状的核小体,要找到一个能完全描述"正常"核小体的单一参数一直是个挑战。开发这一工具(我们称之为"核小体正常性评分")使我们能够精确测量核小体应力,其他实验室也可以用它来测量其实验模型中的核小体应力。"通过对核极应激抗癌化合物的全面筛选,研究小组特别发现了一类酶,即细胞周期蛋白依赖性激酶,抑制这类酶几乎可以完全破坏核仁。许多这类抑制剂在临床试验中都失败了,而它们对核仁的有害影响以前并没有得到充分认识。药物在临床试验中失败的原因往往是其脱靶效应可能导致过多的意外毒性。这意味着,针对一种途径设计的分子也可能影响另一种途径或抑制细胞功能所需的酶。在这项研究中,研究小组发现了对整个细胞器的影响。波塔波娃说:"我希望这项研究至少能让人们进一步认识到,一些抗癌药物可能会对核仁造成意想不到的破坏,这种破坏可能非常突出。在新药研发过程中应考虑到这种可能性"。...PC版:https://www.cnbeta.com.tw/articles/soft/1379797.htm手机版:https://m.cnbeta.com.tw/view/1379797.htm

相关推荐

封面图片

科学家发现癌细胞自毁新方式

科学家发现癌细胞自毁新方式化疗会杀死癌细胞,但这些细胞的死亡方式似乎与之前理解的不同。荷兰癌症研究所研究人员发现了一种全新的癌细胞死亡方式,由SLFN11基因起主导作用。许多癌症治疗都会损害细胞DNA。在遭受太多不可挽回的损害后,细胞可能会自行死亡。研究人员发现,如果DNA受损,基因SLFN11会关闭细胞的蛋白质工厂——核糖体。这会给这些细胞带来巨大压力,从而导致它们死亡。相关研究结果发表在17日出版的《科学》杂志上。

封面图片

科学家开发出突破性新型抗生素“Cresomycin” 可躲避细菌抗药性

科学家开发出突破性新型抗生素“Cresomycin”可躲避细菌抗药性UIC生物科学副教授尤里-波利卡诺夫(YuryPolikanov)的研究小组与哈佛大学的同事建立了长期研究合作关系,最新发现了这种前景广阔的新型抗生素。UIC的科学家们提供了对细胞机制和结构的重要见解,帮助哈佛大学的研究人员设计和合成新药。在开发这种新型抗生素的过程中,该研究小组重点研究了许多抗生素是如何与一个共同的细胞目标--核糖体相互作用的,以及耐药细菌是如何改造它们的核糖体来保护自己的。波利卡诺夫说:"半数以上的抗生素都是通过干扰病原菌的蛋白质生物合成来抑制其生长的,这是一个由核糖体催化的复杂过程。抗生素与细菌核糖体结合,破坏了这种蛋白质制造过程,导致细菌入侵者死亡。"但是,许多细菌物种进化出了简单的防御措施来抵御这种攻击。其中一种防御方法是,它们在核糖体上添加一个由一个碳原子和三个氢原子组成的甲基,从而干扰抗生素的活性。科学家们推测,这种防御只是细菌在物理上阻塞了药物与核糖体结合的部位,"就像在椅子上放了个大头针",波利卡诺夫说。但他们发现了一个更复杂的状况,他们在最近发表于《自然-化学生物学》(NatureChemicalBiology)的一篇论文中对此进行了描述。研究人员通过使用一种名为X射线晶体学的方法,以近乎原子级的精度观察抗药性核糖体,他们发现了两种防御策略。他们发现,甲基不仅能物理阻断结合位点,还能改变核糖体内部"内脏"的形状,进一步破坏抗生素的活性。克服细菌防御随后,波利卡诺夫的实验室利用X射线晶体学研究了某些药物是如何规避这种常见的细菌抗药性的,其中包括2021年由UIC/哈佛大学合作发表在《自然》杂志上的一种药物。波利卡诺夫说:"通过确定抗生素与两种抗药性核糖体相互作用的实际结构,我们看到了现有结构数据或计算机建模无法预测的东西。看到一次总比听到一千次要好,我们的结构对于设计这种前景广阔的新型抗生素以及了解它如何设法摆脱最常见类型的抗药性非常重要。"新抗生素"Cresomycin"是人工合成的。它经过预先组织,可以避开甲基基团的干扰,强力附着在核糖体上,破坏核糖体的功能。这一过程包括将药物锁定为预先优化的形状,以便与核糖体结合,从而帮助它绕过细菌的防御。它只是与核糖体结合,就好像它并不关心是否存在这种甲基化,如此一来能轻松克服几种最常见的耐药性。Cresomycin的巨大潜力在哈佛大学进行的动物实验中,这种药物能防止金黄色葡萄球菌、大肠杆菌和铜绿假单胞菌等常见致病菌耐多药菌株的感染。基于这些令人鼓舞的结果,下一步将对Cresomycin在人体中的有效性和安全性进行评估。即使在这一早期阶段,这一过程也证明了结构生物学在设计下一代抗生素和其他救命药物中的关键作用。波利卡诺夫说:"如果没有这些结构,我们就无法了解这些药物是如何与经过修饰的耐药性核糖体结合并发挥作用的。我们确定的结构让我们从根本上了解了这些药物逃避耐药性的分子机制。"编译来源:ScitechDaily...PC版:https://www.cnbeta.com.tw/articles/soft/1419863.htm手机版:https://m.cnbeta.com.tw/view/1419863.htm

封面图片

剑桥大学科学家确定造成脱靶效应的mRNA模式 并找到了修复方法

剑桥大学科学家确定造成脱靶效应的mRNA模式并找到了修复方法研究人员发现,对治疗药物中使用的合成信使RNA进行化学修饰会导致细胞机器误读其指令,从而产生意想不到的免疫反应。重要的是,他们还发现了解决这一问题的方法。信使核糖核酸(mRNA)告诉人体细胞如何制造特定的蛋白质。当生物化学家卡塔琳-卡里科(KatalinKarikó)和免疫学家德鲁-魏斯曼(DrewWeissman)发现,在合成mRNA的碱基(构件)中插入微妙的化学修饰,可以绕过人体的某些免疫防御,让治疗药物进入细胞并发挥其作用时,mRNA疗法就应运而生了。现在,剑桥大学医学研究委员会(MRC)毒理学组领导的研究发现,"读取"mRNA的细胞机器在遇到mRNA疗法中常见的一种特殊化学修饰重复时可能会出错,导致产生"脱靶"蛋白质,从而引发意想不到的免疫反应。重要的是,他们已经找到了解决方案。该研究的共同通讯作者詹姆斯-塔文蒂兰(JamesThaventhiran)说:"未来mRNA药物的安全问题在于,误导性免疫具有巨大的潜在危害,因此应该避免脱靶免疫反应。我们可以从疫苗的mRNA中移除容易出错的代码,这样机体就会制造出我们想要的免疫反应蛋白,而不会在无意中也制造出其他蛋白"。细胞的解码机器被称为核糖体,它负责"阅读"天然和合成mRNA的遗传密码,从而产生蛋白质。核糖体在mRNA上的精确定位对于制造正确的蛋白质--即"靶向"蛋白质--至关重要,因为核糖体每次读取mRNA的三个碱基,以决定下一个加入链中的蛋白质是什么。因此,即使核糖体发生最小的变化,也会严重扭曲代码和生产的蛋白质。研究人员与肯特大学、牛津大学和利物浦大学的研究人员合作,在接受过辉瑞公司针对SARS-CoV-2的mRNA疫苗的人群中测试了产生脱靶蛋白质的证据。在这项研究的21名患者中,有三分之一的人发现了一种非预期的免疫反应,这种反应没有产生任何不良影响,原因是在mRNA中加入了N1-甲基假尿嘧啶。引入这种改良碱基是为了提高COVID-19疫苗的安全性和有效性。核糖体在面对一串经过修饰的碱基时,大约有10%的时间会"打滑",导致mRNA被误读,产生非预期的蛋白质,这足以引发免疫反应。去除合成mRNA中的N1-甲基假尿嘧啶后,就不会产生非目标蛋白质了。该研究的另一位通讯作者安妮-威利斯(AnneWillis)说:"我们的工作为这种新型药物提出了担忧和解决方案,是来自不同学科和背景的研究人员之间重要合作的结果。这些发现可以迅速付诸实施,以防止未来出现任何安全问题,并确保新的mRNA疗法与COVID-19疫苗一样安全有效。"该研究发表在《自然》杂志上。...PC版:https://www.cnbeta.com.tw/articles/soft/1402995.htm手机版:https://m.cnbeta.com.tw/view/1402995.htm

封面图片

科学家发现对抗癌症微妙基因操纵的药物

科学家发现对抗癌症微妙基因操纵的药物了解DNA缺失许多癌症都会删除一段名为9p21的DNA。事实上,它是所有癌症中最常见的DNA缺失,在某些癌症(如黑色素瘤、膀胱癌、间皮瘤和某些脑癌)中的发生率高达25%-50%。科学家们早就知道,带有9p21缺失的癌症意味着患者的预后更差,而且对免疫疗法--旨在增强患者对癌症的天然免疫反应的治疗策略--产生抗药性。这种缺失有助于癌细胞避免被免疫系统发现和消灭,部分原因是它促使癌细胞分泌出一种叫做MTA的有毒化合物,这种化合物会损害免疫细胞的正常功能,并阻碍免疫疗法的有效性。口腔鳞状癌细胞(白色)被两个细胞毒性T细胞(红色)攻击的伪彩色扫描电子显微镜照片。资料来源:美国国立卫生研究院国家癌症研究所贝勒医学院邓肯综合癌症中心RitaElenaSerda。新药的潜力"在动物模型中,我们的药物能将MTA降回正常值,免疫系统重新启动,"领导这项研究的戴尔医学院分子生物科学系研究副教授兼肿瘤学副教授埃弗雷特-斯通(EverettStone)说。"我们在肿瘤周围看到了更多的T细胞,它们处于攻击模式。T细胞是一种重要的免疫细胞类型,就像一支特警队,能够识别肿瘤细胞,并为它们注入大量酶,从内到外啃噬肿瘤。"斯通设想将这种药物与免疫疗法结合使用,以提高其疗效。该研究的共同第一作者是前UT博士后研究员、现任武田肿瘤公司科学家的DonjetaGjuka,以及前布里格姆妇女医院和丹娜法伯癌症研究所博士后研究员、现任麻省总布里格姆医院住院医师的ElioAdib。了解受缺失影响的基因9p21缺失会导致癌细胞中一些关键基因的缺失。一对产生细胞周期调节因子的基因消失了,而细胞周期调节因子是保持健康细胞以缓慢、稳定的速度生长和分裂的蛋白质。当这些基因丢失时,细胞就会肆意生长。这就是它们致癌的原因。同样被删除的还有一个管家基因,它能产生一种分解毒素MTA的酶。斯通认为,正是这种基因的缺失让癌细胞获得了一种新的超级能力:使免疫系统失活的能力。斯通说:"当癌细胞失去这两个基因时,它就获得了一举两得的效果。它失去了通常防止其失控生长的制动器。与此同时,它还解除了人体警察部队的武装。因此,它会变成一种更具侵略性和恶性的癌症。"为了制造出候选药物,斯通和他的同事们首先利用人体自然产生的有助于分解MTA的酶,然后加入柔性聚合物。斯通说:"这已经是一种非常好的酶,但我们需要对其进行优化,使其在体内的作用时间更长。如果我们只注射天然酶,它会在几小时内被排出体外。在小鼠体内,我们的改良版能在血液循环中存活数天;在人体内,它的存活时间会更长。"研究人员计划对他们这种名为PEG-MTAP的药物进行更多的安全性测试,并正在寻求资金将其用于人体临床试验。...PC版:https://www.cnbeta.com.tw/articles/soft/1390517.htm手机版:https://m.cnbeta.com.tw/view/1390517.htm

封面图片

科学家设计工程酵母以生产复杂的抗癌药物 将节省大量鲜花

科学家设计工程酵母以生产复杂的抗癌药物将节省大量鲜花常用的抗癌药物长春碱(又称长春花碱,Vinblastine)来自某些花卉,但不幸的是,每克药物都需要成吨的植物物质来制造。为了寻找替代来源,科学家们现在已经设计了酵母,以生产长春碱的前体,这可能有助于使这种重要的药物更容易获得和负担得起。马达加斯加长春花(C.roseus)是一种开花植物,数千年来一直被用于传统医学,自20世纪50年代以来一直作为化疗药物长春碱和长春新碱的来源。长春碱干扰细胞分裂,用于治疗淋巴瘤、乳腺癌、膀胱癌和肺癌等,而长春新碱由于能够抑制白细胞的产生,可用于治疗白血病。两者都被列入世界卫生组织的基本药物清单,但令人沮丧的是,它们可能会受到短缺的影响。这是因为生产可用数量的药物需要大量的植物--制造一克长春碱需要500公斤的干叶,而长春新碱则需要2000公斤。在实验室中制造合成版本似乎是显而易见的解决方案,但这些分子的复杂性意味着到目前为止科学家们还没有找到。在这项新的研究中,伯克利实验室和丹麦技术大学(DTU)的研究人员向微生物寻求帮助,用普通的面包酵母来生产药物的前体。该团队对酵母的基因组共进行了56次基因编辑,包括添加34个植物基因,同时删除、抑制和过度表达该微生物的其他本地基因。酵母需要30个步骤来生产两种分子,即catharanthine和vindoline,它们是长春碱的前体。该过程的第31步,也是最后一步,是科学家们随后将这些分子结合起来,制成药物。虽然该团队还没有具体说明酵母能够生产多少药物,但这项概念验证研究应该表明,随着进一步的工作,微生物工厂的规模可以扩大,以制造长春碱和相关的治疗分子,这些分子很难从天然来源提取。该项目共同负责人JayKeasling说:“我们开发的酵母平台将允许以环境友好和负担得起的方式生产长春碱和属于这个天然产品家族的3000多种其他分子。除了长春碱之外,这个平台将能够生产抗成瘾和抗疟疾疗法以及许多其他疾病的治疗。”这项研究发表在《自然》杂志上。PC版:https://www.cnbeta.com/articles/soft/1311627.htm手机版:https://m.cnbeta.com/view/1311627.htm

封面图片

科学家开发出一种通过肠道淋巴系统被人体吸收的新抗癌药物

科学家开发出一种通过肠道淋巴系统被人体吸收的新抗癌药物来自密歇根大学的一个研究小组正在开发一种新的抗癌药物,它通过肠道的淋巴系统而非血管被吸收。这使得它有可能避开导致耐药性的分子信号通路,并与此同时提高抗癌能力并减少副作用。在今日(2022年8月17日)发表在《NatureCommunications》上的一项研究中,研究小组报告了一种新型激酶抑制剂,它能显著减少疾病、限制毒性并延长患有骨髓纤维化(一种急性白血病的前兆)小鼠的生存期。他们设计的口服药物LP-182同时还能针对磷酸肌醇3-激酶(也称为PI3K)和丝裂原活化蛋白激酶(称为MAPK)。两者都是驱动高比例癌症的分子信号通路。在癌症治疗中经常使用组合疗法来针对不同的癌细胞弱点。然而由于这些药物在体内循环并以不同的速度被吸收和清除,维持每种单独药物的正确治疗平衡可能是一个挑战。密歇根大学医学院RogerA.Berg放射学研究教授、论文的第一作者BrianD.Ross博士称,将每种药物维持在有效的必要浓度同时又要限制药物的毒性和副作用这件事尤其棘手。如果不能取得这种平衡就会损害药物组合的抗癌效果并可能导致耐药性--因为PI3K和MAPK的串扰可以激活下游途径来抵制治疗。即使一种药物阻断了一种途径,另一种途径也能提供一种逃逸的生存途径来补偿并继续生长。跟传统的口服药物不同,这些药物通常被设计为迅速吸收到血液中,治疗骨髓纤维化小鼠的科学家发现,LP-182首先被肠道的淋巴系统吸收。淋巴系统作为一个储存库,将药物跟身体的其他部分分开并随着时间的推移逐渐将疗法释放到一般循环中以此将药物浓度维持在最佳治疗水平。Ross说道:“在治疗窗口内,我们能保持对两种不同途径的靶向抑制,这两种途径是相互对话的。这证明了将抗癌药物直接送入淋巴系统的可行性,这为改善癌症治疗效果和减少药物本身的副作用提供了巨大的新机会。”在骨髓纤维化中,骨髓中形成了过多的瘢痕组织,而这会破坏正常的血细胞生产。过度活跃的分子信号传导会导致恶性干细胞增殖、广泛的纤维化、脾脏肿大及进行性骨髓衰竭。该疾病通过淋巴组织扩散,这也是癌症转移的一个常见途径。这意味着Ross和他的团队的发现可能会提供新的策略来防止癌症扩散。此外,Ross称,由于肠道的淋巴系统藏有人体一半以上的免疫细胞,该研究的结果可以为治疗其他疾病提供方法。Ross和他的同事们将继续扩大LP-182的临床前研究,并打算在人类骨髓纤维化患者中进行一期临床试验。另外,正在开发更多的淋巴靶向激酶抑制剂将用于治疗实体肿瘤--包括乳腺癌、脑癌、胃肠癌和胰腺癌及狼疮和多发性硬化症等自身免疫性疾病。PC版:https://www.cnbeta.com/articles/soft/1305551.htm手机版:https://m.cnbeta.com/view/1305551.htm

🔍 发送关键词来寻找群组、频道或视频。

启动SOSO机器人