开创性的单像素技术实现活细胞三维成像

开创性的单像素技术实现活细胞三维成像科学家们开发出一种基于三维光场照明的突破性三维单像素成像(3D-SPI)技术。这种方法能够对显微物体进行高分辨率成像。三维单像素成像方法有可能彻底改变各种生物吸收对比、细胞形态和生长的可视化,为生物医学研究和光学传感带来新的机遇。(显微成像艺术家概念图)。他们通过对单个藻类细胞进行活体成像,进一步证明了该方法对无标记光学吸收对比的三维可视化能力。这项题为"通过三维光场照明进行光学单像素体积成像"的研究最近发表在《美国国家科学院院刊》(PNAS)上。3D-SPI技术示意图。图片来源:刘一帆摄单像素成像的优势单像素成像(SPI)已成为一种极具吸引力的三维成像方式。通过单像素探测器而不是传统的阵列传感器,SPI在光谱范围、检测效率和时间响应方面的性能都超过了传统的传感器。此外,单细胞照相机在微弱强度、单光子水平和精确定时分辨率方面都优于传统成像方法。挑战与突破3D-SPI技术通常依赖飞行时间(TOF)或立体视觉来提取深度信息。然而,现有技术最多只能达到毫米级,无法对细胞等微观物体进行成像。为了突破分辨率的限制,研究人员制作了一个3D-LFI-SPM原型。结果,原型机的成像体积达到约390×390×3,800μm3,分辨率横向高达2.7μm,轴向高达37μm。他们对活的血球藻细胞进行了无标记三维成像,并成功地在原位对活细胞进行了计数。潜在应用可以预见,这种方法可用于观察生物样本的各种吸收对比度。有了深度分辨成像能力,科学家们将来就有可能在原位监测细胞形态和生长情况。这项研究为生物医学研究和光学传感领域应用高性能三维SPI打开了大门。...PC版:https://www.cnbeta.com.tw/articles/soft/1380193.htm手机版:https://m.cnbeta.com.tw/view/1380193.htm

相关推荐

封面图片

新内窥探针可对细胞硬度三维成像

新内窥探针可对细胞硬度三维成像英国诺丁汉大学科学家开发出一款内窥探针,可对单个生物细胞和复杂生物体的硬度进行三维成像,从而帮助医生更早发现和治疗癌症。相关研究论文发表于15日出版的《通讯生物学》杂志。在最新研究中,诺丁汉大学光学和光子团队研究员萨尔瓦多・拉卡韦拉博士等人开发出一根薄薄的内窥探针,可测量单个细胞硬度。这意味着科学家可以在微观细胞层面更早发现癌症,使癌症诊断更快、更安全、更清晰。而且,新方法不具侵入性,也无毒。

封面图片

PicoRuler:基于蛋白质的分子标尺革新细胞成像技术

PicoRuler:基于蛋白质的分子标尺革新细胞成像技术PicoRuler:基于蛋白质的分子标尺可以在现实条件下测试最新超分辨率显微镜方法在亚10纳米范围内对生物分子的光学分辨率。图片来源:GertiBeliu,DALL-E3/维尔茨堡大学由德国巴伐利亚州维尔茨堡朱利叶斯-马克西米利安大学(JMU)鲁道夫-维尔乔中心(RudolfVirchowCentre-CenterforIntegrativeandTranslationalBioimaging)的GertiBeliu博士和MarkusSauer教授领导的科学家团队现在提供了一个转折点。他们在《先进材料》杂志上发表了新型生物兼容分子尺PicoRulers(基于蛋白质的成像校准光学尺)。研究小组利用基因代码扩展和点击化学,成功构建了这些定制的分子尺。它们可在荧光显微镜中用作精确的生物分子参考结构。PicoRulers基于由三部分组成的蛋白质PCNA(增殖细胞核抗原),它在DNA复制和修复中发挥着核心作用。通过在精确定位的位置上引入非天然氨基酸,这种蛋白质已被改性,使荧光染料或其他分子能够以最小的连接误差特异性地点击到它上面。这样,研究人员就能在精确定义的细胞生物分子上以前所未有的精度测试最新超分辨率显微镜方法的分辨率。MarkusSauer热情洋溢地表示:"能够在亚10纳米水平上解析真实的生物结构,标志着生物成像技术进入了一个新时代。与以前使用的人造大分子相比,我们的PicoRuler不仅具有生物兼容性的特点。它们还能在现实条件下实现无与伦比的测试分辨率精度。""这项技术的应用范围远远超出了传统显微镜的界限。"GertiBeliu解释说:"我们的PicoRulers不仅是更精确测量的工具,还为更深入、更详细地研究细胞内发生的复杂过程打开了大门。"从长远来看,PicoRulers的进一步发展可能会改变具有分子分辨率的生物和医学成像。PicoRuler首次实现了在生物样本上验证和提高新的超分辨率显微镜方法的分辨率潜力。这使它们成为未来阐明细胞中生物分子的分子组织和相互作用的宝贵工具。...PC版:https://www.cnbeta.com.tw/articles/soft/1401693.htm手机版:https://m.cnbeta.com.tw/view/1401693.htm

封面图片

加州理工学院激光声成像技术迎来重大飞跃 实现三维成像并减少所需传感器

加州理工学院激光声成像技术迎来重大飞跃实现三维成像并减少所需传感器加州理工学院最近的研究对一种名为PATER的光声成像技术进行了重大改进,该技术现已发展为PACTER。新版本简化了技术,减少了对多个传感器的需求,实现了三维成像,并且无需在每次使用前进行校准。这些进步使该技术在医学成像应用中更加实用和高效。资料来源:加州理工学院加州理工学院医学工程和电子工程布伦教授王力宏实验室的最新研究就属于后者。在发表于《自然-生物医学工程》(NatureBiomedicalEngineering)杂志上的一篇论文中,王力宏和博士后学者张一德展示了他们如何简化和改进他们于2020年首次公布的一种成像技术。这项技术是一种名为PATER(通过极性中继的光声地形图)的光声成像技术,是王建民研究小组的专长。光声成像技术的改进在光声成像中,激光脉冲进入组织,被组织的分子吸收,引起分子振动。每个振动的分子都是超声波的来源,可用于以类似超声波成像的方式对内部结构进行成像。然而,光声成像在技术上具有挑战性,因为它能在短时间内产生所有成像信息。为了捕捉这些信息,王的光声成像技术的早期版本需要将数百个传感器(换能器)组成的阵列紧贴被成像组织的表面,这使得该技术既复杂又昂贵。王和张通过使用一种称为"麦积继电器"的装置减少了所需传感器的数量,这种装置可以减慢信息(以振动的形式)流入传感器的速度。正如之前有关PATER的报道所解释的那样:在计算中,有两种主要的数据传输方法:串行和并行。在串行传输中,数据以单一数据流通过一个通信通道发送。在并行传输中,多个数据通过多个通信通道同时发送。这两种通信方式大致类似于商店中使用收银机的方式。串行通信就像一台收银机。每个人都排在同一条队伍中,看到同一个收银员。并行通信就好比有几个收银机,每个收银机有一条线。Wang设计的拥有512个传感器的系统与拥有许多收银机的商店类似。所有传感器同时工作,每个传感器接收激光脉冲产生的超声波振动的部分数据。由于系统发出的超声波振动是在短时间内产生的,因此如果要在这么短的时间内收集所有数据,单个传感器将不堪重负。这就是麦哲伦继电器的用武之地。正如王力宏所描述的那样,遍历中继器是一种可以让声音在周围回荡的腔体。当超声波振动通过遍历中继器时,它们会在时间上被拉长。回到收银机的比喻,这就好比让另一名员工协助单个收银员,告诉顾客在店里走几圈,直到收银员准备好接待他们,这样收银员就不会手忙脚乱了。PACTER:下一步发展这项技术的最新版本被称为PACTER(PhotoacousticComputedTomographyThroughanErgodicRelay),它更进一步,允许系统使用单个传感器进行操作,通过使用软件,可以收集到与6,400个传感器一样多的数据。兼任安德鲁和佩吉-钱格(AndrewandPeggyCherng)医学工程领导力主席和医学工程执行官的王说,PACTER在另外两个方面改进了PATER。改进之一是PACTER可以生成三维图像,而PATER只能生成二维图像。这得益于改进软件的开发。"过渡到三维成像大大提高了数据要求。我们面临的挑战是如何通过单个传感器传输大量增加的数据,"张说。"我们通过改变方法找到了解决方案。我们首先将一个传感器扩展为数千个虚拟传感器,而不是直接采用计算密集型方法从单传感器数据中重建三维图像。这一想法简化了三维图像重建的过程,使其与我们光声成像的传统方法更加接近"。其次,与PATER不同,PACTER无需在每次使用时进行校准。"使用PATER时,我们必须在每次使用时对其进行校准,而这是不现实的。我们摆脱了这种每次使用时的一次性校准,"王说。之所以需要校准,是因为当系统向组织发射激光脉冲时,脉冲的"回波"会反弹到换能器上,使其无法感知直接的超声波信息。PACTER通过在系统中加入延迟线来解决这个问题。延迟线迫使回波在返回换能器的途中经过更长的物理路径,这样它就能在接收到直接超声波信息后到达换能器。描述这项工作的论文"利用单元素探测器进行单次容积光声断层扫描的血流动力学超快纵向成像"发表在11月30日出版的《自然-生物医学工程》(NatureBiomedicalEngineering)杂志上。该论文的共同作者包括:胡鹏(23年博士),前医学工程研究生;李磊(19年博士),前医学工程博士后;曹睿,医学工程博士后;AnjulKhadria,前医学工程博士后;KonstantinMaslov,前加州理工学院职员科学家;童欣,医学工程研究生;以及南加州大学的曾玉顺、蒋来明和周其发。研究经费由美国国立卫生研究院提供。编译来源:ScitechDaily...PC版:https://www.cnbeta.com.tw/articles/soft/1404763.htm手机版:https://m.cnbeta.com.tw/view/1404763.htm

封面图片

麻省理工学院革新细胞成像技术:观察活细胞内部活动的新方法

麻省理工学院革新细胞成像技术:观察活细胞内部活动的新方法活细胞会受到多种分子信号的轰击,这些信号会影响细胞的行为。如果能够测量这些信号以及细胞如何通过下游分子信号网络对这些信号做出反应,就能帮助科学家更多地了解细胞是如何工作的,包括当细胞衰老或患病时会发生什么。目前,这种全面的研究还不可能实现,因为目前的细胞成像技术仅限于同时对细胞内的少数不同分子类型进行成像。然而,麻省理工学院的研究人员开发出了一种替代方法,可以一次观察多达七种不同的分子,甚至有可能观察到比这更多的分子。分子成像技术的突破"在生物学中,有许多例子表明,一个事件会引发一长串下游事件,进而导致特定的细胞功能,"谭以骅神经技术教授爱德华-博伊登(EdwardBoyden)说。"这是如何发生的?这可以说是生物学的基本问题之一,因此我们想知道,能不能简单地观察它的发生?"新方法利用了以不同速率闪烁的绿色或红色荧光分子。通过对细胞进行数秒、数分钟或数小时的成像,然后利用计算算法提取每个荧光信号,就能跟踪每个目标蛋白质随时间变化的数量。利用四种可切换荧光团,麻省理工学院的研究人员能够标记并成像这些细胞内的四种不同激酶(前四行)。下一行中,细胞核被标记为蓝色。图片来源:研究人员提供博伊登是这项研究的资深作者,他也是麻省理工学院生物工程教授、脑与认知科学教授、霍华德-休斯医学研究所研究员、麻省理工学院麦戈文脑研究所和科赫综合癌症研究所成员,以及杨丽莎仿生学中心(K.LisaYangCenterforBionics)的联合主任。麻省理工学院博士后钱勇是论文的第一作者。荧光信号的进步用荧光蛋白标记细胞内的分子使研究人员能够大量了解许多细胞分子的功能。这类研究通常使用绿色荧光蛋白(GFP),该蛋白在20世纪90年代首次用于成像。从那时起,又开发了几种能发出其他颜色光的荧光蛋白用于实验。然而,典型的光学显微镜只能分辨出其中的两三种颜色,研究人员只能窥见细胞内发生的整体活动。如果能追踪更多的标记分子,研究人员就能测量脑细胞在学习过程中对不同神经递质的反应,或者研究促使癌细胞转移的信号。"理想情况下可以实时观察细胞内的信号波动,然后了解它们之间的关系。这将告诉我们细胞是如何计算的,"博伊登说。"问题是,无法同时观察很多东西。"2020年,博伊登的实验室开发出一种方法,通过将发光报告器瞄准细胞内的不同位置,同时对细胞内的多达五种不同分子进行成像。这种方法被称为"空间多路复用",它能让研究人员分辨出不同分子的信号,即使它们发出的荧光颜色相同。在这项新研究中,研究人员采用了一种不同的方法:他们没有根据信号的物理位置来区分信号,而是创建了随时间变化的荧光信号。这种技术依赖于"可切换荧光团"--能以特定速率开启和关闭的荧光蛋白。在这项研究中,博伊登和他的研究小组成员确定了四种绿色可切换荧光团,然后又设计了另外两种,它们都以不同的速率开启和关闭。他们还确定了两种以不同速率开关的红色荧光蛋白,并设计了另外一种红色荧光团。每种可切换的荧光团都可以用来标记活细胞内不同类型的分子,如酶、信号蛋白或细胞骨架的一部分。在对细胞进行数分钟、数小时甚至数天的成像后,研究人员使用一种计算算法,从每种荧光团中挑选出特定信号,这类似于人耳挑选出不同频率的声音。"在交响乐团中,有长笛等高音乐器,也有大号等低音乐器。中间是小号等乐器。"博伊登说:"它们都有不同的声音,而我们的耳朵会把它们分拣出来。"研究人员用来分析荧光团信号的数学技术被称为线性非混合法。这种方法可以提取不同的荧光团信号,类似于人耳使用一种称为傅立叶变换的数学模型来提取乐曲中的不同音高。分析完成后,研究人员就能看到在整个成像过程中,细胞中每个荧光标记分子出现的时间和位置。成像本身只需一台简单的光学显微镜即可完成,无需专业设备。探索生物现象在这项研究中,研究人员通过标记哺乳动物细胞中参与细胞分裂周期的六种不同分子,展示了他们的方法。这样,他们就能确定细胞周期中依赖细胞周期蛋白的激酶的水平是如何变化的。研究人员还发现,他们还能标记其他类型的激酶,这些激酶几乎涉及细胞信号传导的方方面面,还能标记细胞结构和细胞器,如细胞骨架和线粒体。除了使用在实验室培养皿中生长的哺乳动物细胞进行实验外,研究人员还证明这种技术可以在斑马鱼幼体的大脑中发挥作用。研究人员表示,这种方法有助于观察细胞如何对营养物质、免疫系统因子、激素或神经递质等任何输入做出反应。它还可以用来研究细胞如何对基因表达的变化或基因突变做出反应。所有这些因素都在生长、衰老、癌症、神经变性和记忆形成等生物现象中发挥着重要作用。博伊登说:"我们可以认为所有这些现象都代表了一类普遍的生物问题,即某些短期事件--如摄入某种营养物质、学习某些知识或受到感染--会产生长期变化。"除了进行这些类型的研究,博伊登的实验室还在努力扩大可切换荧光团的范围,以便研究细胞内的更多信号。他们还希望调整该系统,使其能用于小鼠模型。...PC版:https://www.cnbeta.com.tw/articles/soft/1401541.htm手机版:https://m.cnbeta.com.tw/view/1401541.htm

封面图片

生物工程师造出仿生超级三维相机

生物工程师造出仿生超级三维相机美国加州大学洛杉矶分校的生物工程师开发了一类新的仿生3D相机系统,可模仿苍蝇的多视图视觉和蝙蝠的自然声呐感应,从而产生具有非凡深度范围的多维成像,还可以扫描盲点。在计算图像处理支持下,该相机可破译隐藏在角落或其他物品后面的物体的大小和形状。这一技术能集成到自动驾驶汽车或医学成像工具中,其传感能力远远超出当今最先进水平。这项研究发表在《自然·通讯》上。蝙蝠可通过回声定位或声呐的形式将周围环境的画面形象化;昆虫的复眼则由数百到数万个单独的视觉单元组成,使其从多条视线看到同一事物成为可能。受到在苍蝇和蝙蝠中发现的这两种自然现象的启发,加州大学洛杉矶分校研究团队设计出一种高性能3D相机系统,该系统具有先进的功能,既能利用这些优势,又能克服自然界的缺点。研究人员开发了一种全新的计算成像框架,首次通过简单的光学器件和少量传感器获得宽而深的全景视图。该框架被称为“紧凑型光场摄影”(CLIP),使相机系统能以扩展的深度范围“看到”物体周围。在实验中,研究人员证明该系统可“看到”传统3D相机无法发现的隐藏物体。研究人员还使用了LiDAR(光检测和测距)技术,其中激光扫描周围环境以创建该区域的3D地图。没有CLIP的传统LiDAR能拍摄场景的高分辨率快照,但会像人眼一样错过隐藏的物体。该阵列使用7个带CLIP的LiDAR摄像头,拍摄场景的低分辨率图像,处理单个摄像头看到的内容,然后在高分辨率3D成像中重建组合场景。研究人员展示了相机系统可对具有多个对象的复杂3D场景进行成像,这些对象都设置在不同的距离处。研究人员称,CLIP帮助相机阵列以类似的方式理解隐藏的内容。结合激光雷达,该系统能够实现蝙蝠回声定位效果,因此可通过光线反射回摄像头所需的时间来感知隐藏的物体。PC版:https://www.cnbeta.com/articles/soft/1304903.htm手机版:https://m.cnbeta.com/view/1304903.htm

封面图片

科学家以前所未有的"实时"视角揭示大脑的复杂性

科学家以前所未有的"实时"视角揭示大脑的复杂性要掌握这种复杂程度的信息极具挑战性,因此我们必须采用先进的技术,在微观层面上解码大脑内部发生的微小而复杂的相互作用。因此,成像技术成为神经科学领域的关键工具。约翰-丹泽尔(JohannDanzl)在国际科学与技术协会(ISTA)的研究小组开发的新型成像和虚拟重建技术是大脑活动成像技术的一大飞跃,并被恰当地命名为LIONESS-即实时信息优化纳米镜成像技术(LiveInformationOptimizedNanoscopyEnablingSaturatedSegmentation)。LIONESS是一个用于成像、重建和分析活体脑组织的管道,其全面性和空间分辨率是迄今为止无法实现的。a:复杂的神经元环境b:LIONESS可以对样本进行成像和重建,从而阐明活体脑组织中的许多动态结构和功能。资料来源:JohannDanzl"有了LIONESS,我们第一次有可能对活脑组织进行全面、密集的重建。通过对组织进行多次成像,LIONESS让我们能够观察和测量大脑中的动态细胞生物学过程,"第一作者PhilippVelicky说。"输出结果是细胞排列的三维重建图像,时间是第四维,因为样本可以在几分钟、几小时或几天内成像。"LIONESS的优势在于精良的光学技术和构成其核心的两级深度学习(一种人工智能方法):第一级提高图像质量,第二级识别密集神经元环境中的不同细胞结构。该管道是丹泽尔小组、比克尔小组、乔纳斯小组、诺瓦里诺小组、ISTA科学服务单位以及其他国际合作者的合作成果。"ISTA的约翰-丹兹尔(JohannDanzl)说:"我们的方法是组建一个充满活力的科学家小组,他们拥有独特的跨学科综合专长,共同致力于填补脑组织分析领域的技术空白。重建活体脑组织的管道。通过优化的激光聚焦采集显微镜图像--图像处理(DL)--分割(DL)--三维视觉分析。图片来源:JohannDanzl跨越障碍以前可以通过电子显微镜重建脑组织。这种方法根据样本与电子的相互作用对样本进行成像。尽管电子显微镜能捕捉几纳米(百万分之一毫米)分辨率的图像,但它要求样本固定在一种生物状态,需要对样本进行物理切片才能获得三维信息。因此,无法获得动态信息。另一种以前已知的技术是光学显微镜,它可以通过"光学"而不是物理切片来观察活体系统和记录完整的组织体积。然而,由于光波产生图像的特性,光显微镜的分辨率受到严重影响。其最佳分辨率为几百纳米,过于粗糙,无法捕捉脑组织中重要的细胞细节。利用超分辨率光学显微镜,科学家们可以打破这一分辨率障碍。这一领域的最新研究成果被称为"超分辨率阴影成像"(SUSHI,Super-resolutionShadowImaging),它表明,在细胞周围的空间中涂抹染料分子,并应用获得诺贝尔奖的超分辨率技术STED(受激辐射损耗)显微镜,就能显示出所有细胞结构的超分辨率"阴影",从而将它们在组织中可视化。LIONESS可以对样本进行成像和重建,从而阐明活体脑组织中的许多动态结构和功能。资料来源:朱莉娅-柳奇克(JuliaLyudchikISTA)尽管如此,要想通过提高分辨率来对整个体积的脑组织进行成像,从而与脑组织复杂的三维结构相匹配,这一直是不可能的。这是因为在提高分辨率的同时,还需要对样本进行高负荷的成像光照,这可能会损坏或"损坏"微妙的活体组织。这就是LIONESS的优势所在,根据作者的说法,LIONESS是在"快速、温和"的成像条件下开发的,因此能保持样本的活力。该技术在提供各向同性超分辨率的同时--即在所有三个空间维度上都同样出色--还能以三维纳米级分辨率的细节观察组织的细胞成分。在成像步骤中,LIONESS从样本中收集的信息越少越好。随后进行第一个深度学习步骤,在称为"图像复原"的过程中填充有关脑组织结构的额外信息。通过这种创新方式,它可以实现约130纳米的分辨率,同时又足够温和,可以对活脑组织进行实时成像。这些步骤共同实现了深度学习的第二步,这一次是让极其复杂的成像数据变得有意义,并以自动化的方式识别神经元结构。ISTA科学家约翰-丹兹尔(JohannDanzl)在奥地利科技研究所的实验室中。图片来源:NadinePoncioniISTA定位Danzl说:"跨学科的方法使我们能够打破解析力和活体系统光照的相互交织限制,使复杂的三维数据变得有意义,并将组织的细胞结构与分子和功能测量结合起来。"在虚拟重建方面,Danzl和Velicky与视觉计算专家合作:ISTA的Bickel小组和哈佛大学HanspeterPfister领导的小组,他们在自动分割(自动识别组织中的细胞结构的过程)和可视化方面贡献了自己的专业知识,ISTA的图像分析科学家ChristophSommer也提供了进一步的支持。在复杂的标记策略方面,来自爱丁堡、柏林和国际科学与技术机构的神经科学家和化学家也做出了贡献。因此,在同一活体神经元回路中进行功能测量(即读出细胞结构和生物信号活动)成为可能。这项工作是通过与ISTA的Jonas小组合作,对进入细胞的钙离子通量进行成像并测量细胞电活动来完成的。小组提供了人脑有机体,这种有机体通常被昵称为迷你大脑,可以模拟人脑的发育过程。作者强调,所有这一切都得益于ISTA顶尖科学服务部门的专业支持。大脑的结构和活动是高度动态的;其结构随着大脑执行和学习新任务而不断演变。大脑的这一特性通常被称为"可塑性"。因此,观察大脑组织结构的变化对于揭开其可塑性背后的秘密至关重要。国际科学与技术协会开发的新工具通过揭示亚细胞结构并捕捉这些结构如何随时间发生变化,显示出了解脑组织以及其他潜在器官功能结构的潜力。...PC版:https://www.cnbeta.com.tw/articles/soft/1382361.htm手机版:https://m.cnbeta.com.tw/view/1382361.htm

🔍 发送关键词来寻找群组、频道或视频。

启动SOSO机器人