科学家以前所未有的"实时"视角揭示大脑的复杂性

科学家以前所未有的"实时"视角揭示大脑的复杂性要掌握这种复杂程度的信息极具挑战性,因此我们必须采用先进的技术,在微观层面上解码大脑内部发生的微小而复杂的相互作用。因此,成像技术成为神经科学领域的关键工具。约翰-丹泽尔(JohannDanzl)在国际科学与技术协会(ISTA)的研究小组开发的新型成像和虚拟重建技术是大脑活动成像技术的一大飞跃,并被恰当地命名为LIONESS-即实时信息优化纳米镜成像技术(LiveInformationOptimizedNanoscopyEnablingSaturatedSegmentation)。LIONESS是一个用于成像、重建和分析活体脑组织的管道,其全面性和空间分辨率是迄今为止无法实现的。a:复杂的神经元环境b:LIONESS可以对样本进行成像和重建,从而阐明活体脑组织中的许多动态结构和功能。资料来源:JohannDanzl"有了LIONESS,我们第一次有可能对活脑组织进行全面、密集的重建。通过对组织进行多次成像,LIONESS让我们能够观察和测量大脑中的动态细胞生物学过程,"第一作者PhilippVelicky说。"输出结果是细胞排列的三维重建图像,时间是第四维,因为样本可以在几分钟、几小时或几天内成像。"LIONESS的优势在于精良的光学技术和构成其核心的两级深度学习(一种人工智能方法):第一级提高图像质量,第二级识别密集神经元环境中的不同细胞结构。该管道是丹泽尔小组、比克尔小组、乔纳斯小组、诺瓦里诺小组、ISTA科学服务单位以及其他国际合作者的合作成果。"ISTA的约翰-丹兹尔(JohannDanzl)说:"我们的方法是组建一个充满活力的科学家小组,他们拥有独特的跨学科综合专长,共同致力于填补脑组织分析领域的技术空白。重建活体脑组织的管道。通过优化的激光聚焦采集显微镜图像--图像处理(DL)--分割(DL)--三维视觉分析。图片来源:JohannDanzl跨越障碍以前可以通过电子显微镜重建脑组织。这种方法根据样本与电子的相互作用对样本进行成像。尽管电子显微镜能捕捉几纳米(百万分之一毫米)分辨率的图像,但它要求样本固定在一种生物状态,需要对样本进行物理切片才能获得三维信息。因此,无法获得动态信息。另一种以前已知的技术是光学显微镜,它可以通过"光学"而不是物理切片来观察活体系统和记录完整的组织体积。然而,由于光波产生图像的特性,光显微镜的分辨率受到严重影响。其最佳分辨率为几百纳米,过于粗糙,无法捕捉脑组织中重要的细胞细节。利用超分辨率光学显微镜,科学家们可以打破这一分辨率障碍。这一领域的最新研究成果被称为"超分辨率阴影成像"(SUSHI,Super-resolutionShadowImaging),它表明,在细胞周围的空间中涂抹染料分子,并应用获得诺贝尔奖的超分辨率技术STED(受激辐射损耗)显微镜,就能显示出所有细胞结构的超分辨率"阴影",从而将它们在组织中可视化。LIONESS可以对样本进行成像和重建,从而阐明活体脑组织中的许多动态结构和功能。资料来源:朱莉娅-柳奇克(JuliaLyudchikISTA)尽管如此,要想通过提高分辨率来对整个体积的脑组织进行成像,从而与脑组织复杂的三维结构相匹配,这一直是不可能的。这是因为在提高分辨率的同时,还需要对样本进行高负荷的成像光照,这可能会损坏或"损坏"微妙的活体组织。这就是LIONESS的优势所在,根据作者的说法,LIONESS是在"快速、温和"的成像条件下开发的,因此能保持样本的活力。该技术在提供各向同性超分辨率的同时--即在所有三个空间维度上都同样出色--还能以三维纳米级分辨率的细节观察组织的细胞成分。在成像步骤中,LIONESS从样本中收集的信息越少越好。随后进行第一个深度学习步骤,在称为"图像复原"的过程中填充有关脑组织结构的额外信息。通过这种创新方式,它可以实现约130纳米的分辨率,同时又足够温和,可以对活脑组织进行实时成像。这些步骤共同实现了深度学习的第二步,这一次是让极其复杂的成像数据变得有意义,并以自动化的方式识别神经元结构。ISTA科学家约翰-丹兹尔(JohannDanzl)在奥地利科技研究所的实验室中。图片来源:NadinePoncioniISTA定位Danzl说:"跨学科的方法使我们能够打破解析力和活体系统光照的相互交织限制,使复杂的三维数据变得有意义,并将组织的细胞结构与分子和功能测量结合起来。"在虚拟重建方面,Danzl和Velicky与视觉计算专家合作:ISTA的Bickel小组和哈佛大学HanspeterPfister领导的小组,他们在自动分割(自动识别组织中的细胞结构的过程)和可视化方面贡献了自己的专业知识,ISTA的图像分析科学家ChristophSommer也提供了进一步的支持。在复杂的标记策略方面,来自爱丁堡、柏林和国际科学与技术机构的神经科学家和化学家也做出了贡献。因此,在同一活体神经元回路中进行功能测量(即读出细胞结构和生物信号活动)成为可能。这项工作是通过与ISTA的Jonas小组合作,对进入细胞的钙离子通量进行成像并测量细胞电活动来完成的。小组提供了人脑有机体,这种有机体通常被昵称为迷你大脑,可以模拟人脑的发育过程。作者强调,所有这一切都得益于ISTA顶尖科学服务部门的专业支持。大脑的结构和活动是高度动态的;其结构随着大脑执行和学习新任务而不断演变。大脑的这一特性通常被称为"可塑性"。因此,观察大脑组织结构的变化对于揭开其可塑性背后的秘密至关重要。国际科学与技术协会开发的新工具通过揭示亚细胞结构并捕捉这些结构如何随时间发生变化,显示出了解脑组织以及其他潜在器官功能结构的潜力。...PC版:https://www.cnbeta.com.tw/articles/soft/1382361.htm手机版:https://m.cnbeta.com.tw/view/1382361.htm

相关推荐

封面图片

生物芭蕾:科学家以前所未有的清晰度揭示分子"相干性"之舞

生物芭蕾:科学家以前所未有的清晰度揭示分子"相干性"之舞结合两种技术,研究人员揭示了"相干性"在分子反应中的关键作用,为分子动力学的先进控制铺平了道路。探测过程示意图。资料来源:SamuelPerrett由帝国理工大学生命科学系的贾斯珀-范-托尔(JaspervanThor)教授领导的大型国际研究小组最近在《自然-化学》(NatureChemistry)杂志上报告了他们的研究成果。晶体学是结构生物学中一项强大的技术,它可以拍摄分子排列方式的"快照"。经过数次大规模实验和多年的理论研究,新研究背后的团队将这项技术与另一项绘制分子电子和核构型振动图的技术(即光谱学)相结合。研究小组在世界各地的强大X射线激光设备上演示了这项新技术,结果表明,当他们研究的蛋白质中的分子受到光学激发时,它们的最初运动是"相干"的结果。这表明这是一种振动效应,而不是随后生物反应功能部分的运动。首次在实验中显示的这一重要区别,凸显了光谱物理学如何为结构生物学的经典晶体学方法带来新的启示。范托尔教授说:"维持生命的每一个过程都是由蛋白质完成的,但要了解这些复杂分子是如何完成它们的工作,就必须了解它们原子的排列,以及这种结构在反应过程中是如何变化的。利用光谱学的方法,我们现在可以通过解决其晶体结构,直接以图像的形式看到属于所谓相干过程的超快分子运动。我们现在拥有了以接近原子分辨率的极快时间尺度理解甚至控制分子动力学的工具。我们希望通过分享这一新技术的方法细节,能够鼓励时间分辨结构生物学以及超快激光光谱学领域的研究人员探索相干过程的晶体结构"。技术结合将这些技术结合起来需要使用X射线自由电子激光器(XFEL)设施,包括美国的Linac相干光源(LCLS)、日本的SPring-8Angstrom紧凑型自由电子激光器(SACLA)、韩国的PAL-XFEL以及最近在汉堡的欧洲XFEL。自2009年以来,该团队成员一直在XFEL工作,利用并了解飞秒(十亿分之一秒)时间尺度上反应蛋白质的运动,这被称为飞秒化学。在激光脉冲激发后,利用X射线对结构进行"快照"。2016年,这项技术取得了初步成功,详细描绘了光诱导生物蛋白质发生的变化。然而,研究人员仍需解决一个关键问题:在第一个激光光脉冲之后,飞秒时间尺度上的微小分子"运动"直接源自何处?以前的研究假设所有的运动都与生物反应相对应,即其功能运动。但使用新方法后,研究小组在实验中发现情况并非如此。相干控制为了得出这一结论,他们创造了"相干控制"--塑造激光,以可预测的方式控制蛋白质的运动。2018年在斯坦福的LCLS取得初步成功后,为了检查和验证这种方法,他们在世界各地的XFEL设施共进行了六次实验,每次都组建了大型团队,并形成了国际合作关系。然后,他们将这些实验数据与从飞沫化学修改而来的理论方法相结合,以便将其应用于X射线晶体学数据而非光谱数据。结论是,在皮米尺度和飞秒时间尺度上精确测量到的超快运动并不属于生物反应,而是属于剩余基态的振动一致性。这意味着飞秒激光脉冲过后"遗留"的分子会主导随后测量到的运动,但仅限于所谓的振动相干时间内。范索尔教授说:"我们的结论是,在我们的实验中,即使不包括相干控制,传统的时间分辨测量实际上也是由来自黑暗"反应物"基态的运动所主导,而这些运动与光引发的生物反应无关。相反,这些运动与传统的振动光谱法所测量的运动相对应,具有非常不同但同样重要的意义这实际上是根据以前的理论工作预测出来的,但现在却在实验中得到了证实。这将对时间分辨结构生物学以及超快光谱学领域产生重大影响,因为我们已经开发并提供了分析超快飞秒时间尺度运动的工具。"...PC版:https://www.cnbeta.com.tw/articles/soft/1384887.htm手机版:https://m.cnbeta.com.tw/view/1384887.htm

封面图片

科学家开发出标记技术"NeuM" 可实时监测神经元的变化

科学家开发出标记技术"NeuM"可实时监测神经元的变化韩国科学技术院(KIST)脑科学研究所的KimYunKyung博士领导的研究团队与浦项科技大学ChangYoung-Tae教授的团队合作,宣布开发出名为NeuM的新一代神经元标记技术。NeuM(神经元膜选择性)可选择性地标记神经元膜,使神经元结构可视化,并可实时监测神经元的变化。韩国科学技术院金润京博士团队的研究人员正在利用下一代神经元标记技术"NeuM",对神经元进行实时可视化,并检查高分辨率图像。资料来源:韩国科学技术院神经元不断改变其结构和功能,将信息从感觉器官传递到大脑,从而调节思维、记忆和行为。因此,要克服神经退行性疾病,就必须开发能选择性标记活体神经元以进行实时监测的技术。然而,目前常用于观察神经元的基于基因和抗体的标记技术,由于依赖于特定的基因表达或蛋白质,存在准确性低和难以长期追踪的问题。NeuM是研究小组通过对神经元细胞进行分子设计而开发的,与神经元膜具有极佳的结合亲和力,可对神经元进行长期跟踪和高分辨率成像。NeuM中的荧光探针利用活细胞的活性与神经元膜结合,在特定波长光的激发下发出荧光信号。这种神经元膜可视化技术允许对神经元终端结构进行详细观察,并对神经元分化和相互作用进行高分辨率监测。选择性标记神经元膜的分子设计。资料来源:韩国科学技术院NeuM是第一种通过活体神经元的内吞作用对细胞膜进行染色的技术,它对活体细胞具有选择性反应,排除了未内吞的死细胞。此外,研究团队还成功地将神经元的观察时间从短短6小时延长至72小时,从而能够捕捉活体神经元在较长时间内随环境变化而发生的动态变化。NeuM有望为目前尚无特效疗法的神经退行性疾病的研究和治疗开发提供洞察力。包括阿尔茨海默氏症在内的这些疾病是由于淀粉样蛋白等有毒蛋白质的产生和炎症物质的涌入造成神经元损伤的结果。NeuM对神经元变化的精确观察可有效促进对候选治疗化合物的评估。金博士表示:"此次开发的NeuM可以区分衰老和退化的神经元,成为阐明大脑退化性疾病机制和开发治疗方法的重要工具。"他进一步补充说:"未来,我们计划改进NeuM,通过设计荧光波长来区分绿色和红色等颜色,从而更精确地分析神经元。"编译来源:ScitechDaily...PC版:https://www.cnbeta.com.tw/articles/soft/1428464.htm手机版:https://m.cnbeta.com.tw/view/1428464.htm

封面图片

科学家绘制人类大脑一小部分的高分辨率地图

科学家绘制人类大脑一小部分的高分辨率地图根据发表在《》期刊上的一项研究,哈佛和Google的科学家绘制出人类大脑一小部分的高分辨率3D地图。图谱揭示了脑细胞神经元之间的新连接模式,以及围绕自身形成结的细胞,以及几乎互为镜像的成对神经元。3D地图覆盖了大约一立方毫米的体积,是整个大脑的百万分之一,包含了大约57,000个细胞和1.5亿个突触。它包含了1.4pb的庞大数据。这块大脑碎片取自一名45岁的女性,当时她正在接受治疗癫痫的手术。它来自大脑皮层,这是大脑中负责学习、解决问题和处理感官信号的部分。样品浸泡在防腐剂中,并用重金属染色,使细胞更容易被看到。研究人员将样本切成大约5000片——每片只有34纳米厚——可以用电子显微镜成像。他们建立了AI模型,能将显微镜图像拼接在一起,以3D方式重建整个样本。来源,频道:@kejiqu群组:@kejiquchat

封面图片

哈佛大学的科学家们揭示了乌贼和章鱼如何发展出它们聪明的大脑袋

哈佛大学的科学家们揭示了乌贼和章鱼如何发展出它们聪明的大脑袋这不是什么秘密,是什么让它成为可能。头足类动物,包括章鱼、乌贼和墨鱼拥有所有无脊椎动物中最复杂的大脑。然而,它们如何开发这些大型大脑的过程一直是个谜。哈佛大学一个研究这些生物的视觉系统的实验室认为,他们在理解这一过程方面取得了重大进展,因为这些生物的大部分中央处理组织都集中在视觉系统。他们说,这个过程看起来令人惊讶地熟悉。来自FAS系统生物学中心的研究人员描述了他们如何使用一种新的活体成像技术,几乎实时地观察神经元在胚胎中的形成。然后他们能够通过视网膜的神经系统的发展来追踪这些细胞。他们看到的情况让他们感到惊讶。这是本文中产生的实时成像数据的一个例子。眼睛中的细胞膜被标记为荧光染料,使我们能够看到发育过程中的单个细胞行为。资料来源:KristenKoenig他们追踪的神经干细胞的行为与脊椎动物在神经系统发育过程中这些细胞的行为方式极为相似。这表明,尽管脊椎动物和头足类动物在5亿年前就相互分化,但它们不仅在使用类似的机制来制造它们的大大脑,而且这一过程以及细胞的行为、分裂和形状的方式可能基本上布局了开发这种神经系统所需的蓝图。"我们的结论令人惊讶,因为我们对脊椎动物神经系统发育的许多了解长期以来一直被认为是该系的特殊情况,"约翰-哈佛大学杰出研究员和该研究的高级作者克里斯汀-科尼格说。"通过观察这个过程非常相似的事实,它向我们建议的是,这两个独立进化的非常大的神经系统正在使用相同的机制来构建它们。这表明的是,动物在发育过程中使用的那些机制--那些工具--可能对构建大的神经系统很重要。"来自科尼格实验室的科学家们集中研究了一种叫做Doryteuthispealeii的乌贼的视网膜,更简单地说就是一种长鳍乌贼。这种鱿鱼长到大约一英尺长,在西北大西洋中非常多。作为胚胎,它们看起来相当可爱,有着圆圆的大脑袋和大眼睛。研究人员使用了与研究模式生物(如果蝇和斑马鱼)所流行的类似技术。他们创造了特殊的工具,并使用尖端的显微镜,可以每十分钟拍摄一次高分辨率的图像,连续拍摄数小时,以观察单个细胞的行为。研究人员使用荧光染料来标记细胞,以便他们能够绘制和跟踪它们。这种活体成像技术使研究小组能够观察被称为神经祖细胞的干细胞以及它们是如何组织的。这些细胞形成了一种特殊的结构,称为假上皮细胞。它的主要特征是细胞被拉长,所以它们可以密集地排列。研究人员还看到这些结构的细胞核在分裂前后都会上下移动。他们说,这种运动对于保持组织的有序性和生长的持续很重要。这种类型的结构在脊椎动物物种如何发展其大脑和眼睛方面是普遍的。在历史上,它被认为是脊椎动物的神经系统能够增长得如此巨大和复杂的原因之一。科学家们已经在其他动物中观察到这种类型的神经上皮的例子,但是他们在这个例子中观察的乌贼组织在其大小、组织和细胞核的移动方式上与脊椎动物的组织异常相似。这项研究由科尼格实验室的研究助理FrancescaR.Napoli和ChristinaM.Daly领导。接下来,该实验室计划研究头足类动物大脑中不同的细胞类型是如何出现的。科尼格想确定它们是否在不同的时间表达,它们如何决定成为一种类型的神经元而不是另一种,以及这种行动在不同的物种中是否相似。科尼格对摆在面前的潜在发现感到兴奋,他说:"这类工作的一个重要启示是,研究生命的多样性是多么有价值。通过研究这种多样性,你实际上可以真正回到关于甚至我们自己的发展和我们自己的生物医学相关问题的基本想法。你可以真正谈论这些问题。"...PC版:https://www.cnbeta.com.tw/articles/soft/1337677.htm手机版:https://m.cnbeta.com.tw/view/1337677.htm

封面图片

科学家研制出改进型中红外显微镜 清晰度提高30倍

科学家研制出改进型中红外显微镜清晰度提高30倍这幅插图左上方是用中红外线照射的细菌,下方显微镜发出的可见光帮助捕捉图像。细菌内部的化学图像比传统的中红外显微镜清晰30倍。图片来源:2024Ideguchi等人/《自然-光子学》(NaturePhotonics)研究人员说,这一最新进展产生了120纳米的图像,比典型的中红外显微镜的分辨率提高了30倍。能够在更小的范围内更清晰地观察样本,有助于多个领域的研究,包括传染病研究,并为未来开发更精确的中红外成像技术开辟了道路。微观领域是病毒、蛋白质和分子的栖息地。借助现代显微镜,我们可以大胆地观察自己细胞的内部结构。但即使是这些令人印象深刻的工具也有其局限性。例如,超分辨率荧光显微镜需要用荧光标记标本。这有时会对样本产生毒性,而且在观察时长时间暴露在光线下会漂白样本,这意味着它们不再有用。电子显微镜也能提供令人印象深刻的细节,但样本必须置于真空中,因此无法研究活体样本。相比之下,中红外显微镜可以提供活细胞的化学和结构信息,而无需对细胞进行着色或破坏。然而,由于中红外显微镜的分辨率相对较低,它在生物研究中的应用受到了限制。超分辨荧光显微镜可以将图像缩小到数十纳米(1纳米为一毫米的百万分之一),而中红外显微镜通常只能达到3微米左右(1微米为一毫米的千分之一)。然而,东京大学的研究人员在一项新的突破中,实现了比以往更高的中红外显微镜分辨率。"我们的空间分辨率达到了120纳米,即0.12微米。"东京大学光子科学与技术研究所的TakuroIdeguchi教授解释说:"这一惊人的分辨率大约是传统中红外显微镜分辨率的30倍。"研究小组使用了"合成孔径"技术,该技术结合了从不同照明角度拍摄的多幅图像,以生成更清晰的整体图像。通常情况下,样品被夹在两个透镜之间。然而,透镜会无意中吸收部分中红外光。为了解决这个问题,研究人员将细菌样本(使用了大肠杆菌和RhodococcusjostiiRHA1)放在硅板上,硅板可以反射可见光并透过红外线。这样,研究人员就可以使用单透镜,用中红外光更好地照射样品,获得更详细的图像。"我们对能够如此清晰地观察细菌的胞内结构感到惊讶。我们显微镜的高空间分辨率可以让我们研究抗菌药耐药性等世界性问题,"Ideguchi说。"我们相信,我们可以从多个方向继续改进这项技术。如果我们使用更好的透镜和更短的可见光波长,空间分辨率甚至可以低于100纳米。有了更高的清晰度,我们希望研究各种细胞样本,以解决基础和应用生物医学问题。"编译来源:ScitechDaily...PC版:https://www.cnbeta.com.tw/articles/soft/1428501.htm手机版:https://m.cnbeta.com.tw/view/1428501.htm

封面图片

新方法使科学家们能够以前所未有的细节观察细胞的分泌情况

新方法使科学家们能够以前所未有的细节观察细胞的分泌情况我们知道詹姆斯-韦伯望远镜刚刚能够捕捉到令人叹为观止的遥远星系的照片,而这些星系在以前只能看到朦胧的斑块。观察单细胞蛋白质分泌的"詹姆斯韦伯"则是由圣路易斯华盛顿大学的研究人员使用一种革命性的技术创造出来的,该技术可以对细胞产生的蛋白质实现惊人的详细可视化。PC版:https://www.cnbeta.com/articles/soft/1328869.htm手机版:https://m.cnbeta.com/view/1328869.htm

🔍 发送关键词来寻找群组、频道或视频。

启动SOSO机器人