德国明斯特大学的化学家开发出一种新的分水方法

德国明斯特大学的化学家开发出一种新的分水方法然而,由于水分子非常稳定,将其分裂成氢和氧对化学家来说是一个巨大的挑战。要想成功,首先必须使用催化剂激活水分子,这样水分子才更容易发生反应。由德国明斯特大学有机化学研究所ArmidoStuder教授领导的研究小组开发出了一种光催化工艺,在这种工艺中,水在温和的反应条件下通过三芳基膦而不是像大多数其他工艺那样通过过渡金属复合物被激活。在光能(LED)的作用下,水(H2O)中的氢原子(H)被转移到膦-水自由基阳离子上。这一重要的自由基中间体可进一步将氢原子(白色)转移到基质上。蓝色区域表示电子自旋分布。图片来源:ChristianMück-Lichtenfeld研究小组最近在《自然》(Nature)杂志上发表的这一研究成果,将为高度活跃的自由基化学研究领域打开一扇新的大门。通常自由基是高活性的中间体。研究小组使用一种特殊的中间体膦水自由基阳离子作为活化水,从中可以轻易地拆分出H2O中的氢原子,并转移到另一种底物上。"反应由光能驱动。"ArmidoStuder说:"我们的系统为研究利用氢原子作为合成试剂的未研究化学过程提供了一个理想的平台"。ChristianMück-Lichtenfeld博士使用理论方法分析了活化水复合物,他说:"这种中间体中的氢氧键异常微弱,因此可以将氢原子转移到各种化合物中。"进行实验工作的张晶晶博士补充说:"在所谓的氢化反应中,活化水的氢原子可以在非常温和的条件下转移到烯烃和炔烃中"。氢化反应在医药研究、农用化学工业和材料科学领域都非常重要。...PC版:https://www.cnbeta.com.tw/articles/soft/1382041.htm手机版:https://m.cnbeta.com.tw/view/1382041.htm

相关推荐

封面图片

化学家们开发出一种新方法来生产一种重要的分子实体

化学家们开发出一种新方法来生产一种重要的分子实体明斯特大学团队开发的新方法与其他方法不同,不需要使用过渡金属或碘试剂作为催化剂。相反,它利用光能从各种富含电子的芳香烃(如异戊二烯和杂烯)中产生所需的二胺。这使得该过程比其他方法更加高效和有效。"通过这种方式,我们获得了一系列以前难以生产的邻接二胺。"第一作者谭光英博士解释说:"这样做,我们可以精确控制官能团所在的位置。"所谓的氮自由基前体(左)和碳-碳双键在光能的帮助下发生反应,形成不对称的二胺(右)。资料来源:明斯特大学-Glorius小组为此,化学家们开发了一类特殊的氮自由基前体,通过能量转移过程同时产生两个具有不同反应活性的氮心自由基。通过"区域选择性"地通过碳-碳双键逐步添加这些自由基中的两个,科学家们产生了不对称结构的代二胺。"区域选择性"意味着反应发生在分子上的特定位置。然后可以进一步修改功能团(氨基)。以这种方式合成的二元胺不是对称的,这与对称结构相反,开辟了更多种类的功能基团供考虑。"生命的分子主要由不同大小和复杂性的碳链和碳环组成。"FrankGlorius解释说:"用其他元素装饰这些'普通'链对这些化合物的最终特性至关重要。氧和氮元素发挥了关键作用。化学家将这些非碳元素称为杂原子。FrankGlorius强调说:"因此,在人工生产的、具有生物活性的结构中有效和可控地引入这些杂原子的方法是非常重要的。这也适用于我们正在关注的邻接二胺。"化学家们在蓝色发光二极管(LEDs)的照射下进行二氨基反应,并使用一种廉价的、可在市场上买到的硫杂蒽酮作为有机光敏剂。该研究由德国研究基金会、AlexandervonHumboldt-Stiftung和FondsderChemischenIndustrie资助。...PC版:https://www.cnbeta.com.tw/articles/soft/1339679.htm手机版:https://m.cnbeta.com.tw/view/1339679.htm

封面图片

化学家开发出去除水中"永久化学物质"的可持续方法

化学家开发出去除水中"永久化学物质"的可持续方法含二茂铁单元的金属聚合物用于可逆吸收全氟化合物的图示。资料来源:MarkusGallei然而,这种广泛的使用也引起了人们的担忧。由于其性质稳定且缺乏自然降解途径,这些耐久性化学品会在我们的环境中持续累积,给人类健康和周围环境带来严重问题。如今,在全球范围内,从水、空气、土壤到植物和动物,都能发现PFAS的踪迹。它们不可避免地也会进入人体。这些化学物质对健康的危害到底有多大,目前还不清楚。初步的实验室动物研究表明,PFAS可能会损害生殖健康。显而易见的是,这些合成化合物不属于自然环境,当然也不属于生物体。因此,设法降低环境中的PFAS污染水平是合理的。但是,PFAS的修复工作既复杂又具有挑战性,而且所使用的工艺本身也会对环境和气候造成不利影响。在清除之前,必须先检测出PFAS。由于只需要少量的PFAS就能产生很大的影响(例如食品包装中的超薄涂层),因此检测工作并不容易。传统上,PFAS是通过使用特殊膜或成本较低的活性炭吸附剂进行过滤而从水中去除的。然而,要从这些过滤系统中回收PFAS并将其永久销毁,要么需要使用苛刻的化学条件,要么需要进行焚烧。至少到目前为止还是如此。由萨尔州大学高分子化学教授MarkusGallei、伊利诺伊大学香槟分校教授XiaoSu以及他们的博士生FrankHartmann(萨尔州)和PaolaBaldaguez(伊利诺伊州)领导的研究小组开发出了一种新的电化学方法,可以从水中去除全氟辛烷磺酸化学物质,然后再有效地释放出来进行销毁。这种新的PFAS修复平台可以收集、识别和销毁这些含氟污染物,而无需焚烧过滤器。在研究小组开发的方法中,起核心作用的是被称为茂金属的含金属聚合物。1951年,随着含铁分子二茂铁的发现,茂金属首次出现在人们的视野中。此后,又有许多其他茂金属被开发出来。弗兰克-哈特曼(FrankHartmann)、马库斯-加利(MarkusGallei)和他们的国际团队发现,二茂铁功能化电极或弗兰克-哈特曼合成的钴功能化电极(甚至更有效)能够去除水中微量的全氟辛烷磺酸分子。但真正的关键在于,如果在二茂铁或二茂钴金属聚合物上施加电压,它们就能'切换'电状态,释放之前捕获的全氟辛烷磺酸分子。弗兰克-哈特曼(FrankHartmann)说:"钴在这方面的能力明显强于铁。我们已经找到了一种方法,可以有效地将PFAS从水中去除,然后再释放出来,从而有效地使电极再生,以便继续使用。""与活性炭过滤器不同,活性炭一旦被全氟辛烷磺酸分子饱和,我就必须将其销毁,但如果我愿意,我可以无数次地更换茂金属,"马库斯-加莱总结研究工作的意义时说。在奠定了技术基础之后,弗兰克-哈特曼、马库斯-加莱和他们在伊利诺伊大学的同事们现在正在寻求更大规模的开发,以促进从我们的河流和海洋中清除这些高持久性污染物。...PC版:https://www.cnbeta.com.tw/articles/soft/1375833.htm手机版:https://m.cnbeta.com.tw/view/1375833.htm

封面图片

德国化学家成功合成含有两种不同金属原子的二茂金属

德国化学家成功合成含有两种不同金属原子的二茂金属茂金属化学的进步导致了"杂多金属"夹层分子的合成,这种分子的创造具有挑战性,但却为新的化学发现和工业应用提供了潜力。安德烈-舍费尔(AndréSchäfer)和英格-比绍夫(IngaBischoff)在实验室中与他们的新型二茂金属样品。图片来源:萨尔州大学/ThorstenMohr没有人确切知道目前有多少种三明治分子,但数量肯定数以千计。它们都有一个共同点:在两个碳原子的扁平环之间有一个金属原子。至少在2004年之前,人们一直是这么认为的,直到塞维利亚大学的一个研究小组有了惊人的发现。长期以来,这种含有两个锌原子的"二茂金属"一直是同类作品中的佼佼者,直到去年英国的一个研究小组成功合成了一种非常类似的含有两个铍原子的分子。但现在,德国萨尔州大学安德烈-舍费尔博士研究小组的博士生英格-比肖夫(IngaBischoff)又向前迈进了一大步。她成功地在实验室中合成了世界上第一个"异双金属"夹层复合物--一种含有两种不同金属原子的二茂金属。理论与实践的突破2004年发现第一个茂金属后不久,理论研究表明它不一定要含有两个完全相同的金属原子,含有两个不同金属原子的复合物也应该是稳定的。这些预测是在利用功能强大的计算机进行量子化学建模计算的基础上得出的。尽管预测了这种分子的稳定性,但在英格-比绍夫取得目前的突破之前,所有在实验室中制造这种分子的尝试都没有成功。"当你意识到手中握着的是什么时,你会感到非常兴奋和特别。肉眼看上去,它只是另一种白色粉末。但我仍然清楚地记得,当我们第一次在电脑屏幕上看到实验测定的分子结构时,我们知道我们有了一个含有两种不同金属原子的三明治分子,"安德烈-舍费尔博士说。"选择哪种碳环和在碳环之间包围哪种金属原子一样重要。这一点至关重要,因为环状碳环和金属原子的电子结构必须相互匹配,我们的'异双金属二茂金属'中包含的金属是锂和铝。计算预测这两种金属将是合适的候选金属,因为它们的电子结构在某些意义上与两个锌原子的电子结构相似,我们知道这两种金属可以形成稳定的二茂金属。"但是,听起来简单明了的事情却花了几个月的时间才实现。事实证明,这种分子非常活跃,只能在惰性氮气或氩气毯下合成、储存和分析。如果它接触到空气,就会直接分解。一旦合成了这种分子,就需要对其进行表征,这就需要萨尔州大学的整个科学家团队的参与。他们的工作成果现已发表在备受推崇的《自然-化学》杂志上。"我们的杂多金属二茂金属实际上代表了一类全新的夹层分子。"小组负责人AndréSchäfer博士说:"谁知道呢,也许有一天它也会被写进学生的教科书中。但首先,我们需要进一步研究它。目前,我们对它的结构有了很好的了解,但对它的反应性仍然知之甚少。如果我们找到其他合适的金属原子组合,将来很可能合成出其他夹杂多金属的二茂金属。"1973年,德国化学家恩斯特-奥托-费舍尔(ErnstOttoFischer)和英国化学家杰弗里-威尔金森(GeoffreyWilkinson)获得诺贝尔奖,以表彰他们在有机金属(即所谓的夹心化合物)化学方面独立完成的开创性工作,这凸显了这类分子的巨大意义。编译来源:ScitechDaily...PC版:https://www.cnbeta.com.tw/articles/soft/1431062.htm手机版:https://m.cnbeta.com.tw/view/1431062.htm

封面图片

化学家们合成了一种来自于海绵分子的人工形式 可以对抗帕金森症

化学家们合成了一种来自于海绵分子的人工形式可以对抗帕金森症在一个令人惊讶的转折中,研究小组利用了一种不寻常的、长期被忽视的化合物,即环烯,来控制在实验室中创造该分子的可用形式所需的化学反应的一个关键阶段。据该团队称,这一突破有可能有利于开发其他复杂的分子用于制药研究。他们的研究结果发表在《科学》杂志上。加州大学洛杉矶分校化学和生物化学系KennethN.Trueblood教授和该研究的通讯作者NeilGarg说:"今天绝大多数的药物是由合成有机化学制成的,我们在学术界的作用之一是建立新的化学反应,可以用来快速开发药物和具有复杂化学结构的分子,使世界受益。"Garg说,使这些合成有机分子的发展复杂化的一个关键因素被称为"手性"。许多分子--包括lissodendoricacidA--可以以两种不同的形式存在,它们在化学上是相同的,但彼此是三维镜像,就像左手和右手。每个版本都被称为对映异构体。当用于制药时,一个分子的对映异构体可能具有有益的治疗效果,而另一个可能完全没有作用--甚至证明是危险的。不幸的是,在实验室中创造有机分子时,往往会产生两种对映异构体的混合物,而用化学方法去除或逆转不需要的对映异构体,会给整个过程带来困难、成本和延误。为了应对这一挑战,并快速有效地只生产几乎只在自然界中发现的lissodendoricacidA的对映异构体,Garg和他的团队在他们的12步反应过程中采用了环烯烃作为中间物。这些高活性的化合物在20世纪60年代首次被发现,此前从未被用来制造如此复杂的分子。"环烯烃,自从半个多世纪前发现以来,它们在很大程度上被遗忘了。这是因为它们具有独特的化学结构,并且在生成时只存在几分之一秒。"该团队发现,他们可以利用这些化合物的独特品质来生成环烯烃的一个特定手性版本,这反过来又导致了化学反应,最终几乎完全产生了所需的lissodendoricacidA分子的对映异构体。化学家们说,虽然能够合成生产lissodendoricacidA的类似物是测试该分子是否可能拥有适合未来治疗的品质的第一步,但合成该分子的方法可以立即让参与制药研究的其他科学家受益。Garg说:"通过挑战传统思维,我们现在已经学会了如何制造环烯烃,并利用它们来制造像lissodendoricacidA这样的复杂分子。我们希望其他人也能使用环烯烃来制造新药。"...PC版:https://www.cnbeta.com.tw/articles/soft/1345513.htm手机版:https://m.cnbeta.com.tw/view/1345513.htm

封面图片

日本化学家开发出自带发光特性的自愈材料

日本化学家开发出自带发光特性的自愈材料理化学研究所CSRS研究人员开发的一种突破性自愈合荧光材料为更耐用的有机太阳能电池和更广泛的应用提供了潜力,符合可持续消费和生产的目标。2019年,理化学研究所CSRS的侯兆民及其团队使用稀土金属催化剂成功共聚了乙烯和异丙烯。由此产生的二元共聚物具有显著的损伤自愈特性。这种共聚物的软组分(乙烯和异丙烯的交替单元)与乙烯-乙烯链的硬结晶单元结合在一起,成为物理交联点,形成了纳米相分离结构,这被证明是自愈合的关键。由乙烯、异丙烯和芘乙烯基取代苯乙烯组成的三元共聚物花纹薄膜的荧光和自愈特性。资料来源:理化学研究所在这一成功的基础上,他们在单体中加入了发光单元苯乙烯,然后形成了包括异丙烯和乙烯在内的聚合物。这一过程只需一个步骤,就能合成具有荧光特性的自愈材料。"荧光材料非常有用,可用于有机发光二极管(OLED)、有机场效应晶体管(OFET)和太阳能电池。然而,这些材料的主要问题之一是使用寿命短。我们的新材料有望延长产品的使用寿命并提高可靠性。"还有一个惊喜,事实证明,由此产生的共聚物不仅坚韧,而且还能在没有外部刺激或能量的情况下实现自我修复。它的拉伸强度在24小时内完全恢复,与二元共聚物相比,显示出很高的自愈速度。这种材料即使在水、酸性和碱性溶液中也能自我修复,因此可用于各种环境。这种共聚物的网络结构包括由苯乙烯-苯乙烯单元和结晶乙烯-乙烯纳米域形成的物理交联点,以及由交替单元组成的软段,从而促进了自我修复。这种材料还显示出一种附加特性。研究小组通过光刻技术成功地将二维图像转移到了荧光自修复薄膜上。虽然图像在自然光下仍不可见,但在紫外线下却可以辨认,这表明这种薄膜有可能用作信息存储设备。即使在图像的作用下,薄膜仍能保持良好的自愈合和弹性特性。"我们通过一步反应合成的这种材料,使我们能够通过调整单体的成分来控制其光学和机械性能。我们认为,它能为开发在各种实际环境中具有高度自愈能力的新型功能材料做出重大贡献,"侯说。"这项研究符合联合国的可持续发展目标(SDGs),尤其有助于实现"目标12:确保可持续的消费和生产模式"。编译自:ScitechDaily...PC版:https://www.cnbeta.com.tw/articles/soft/1426894.htm手机版:https://m.cnbeta.com.tw/view/1426894.htm

封面图片

MIT化学家们发现一种可改变形状的受体如何影响细胞生长

MIT化学家们发现一种可改变形状的受体如何影响细胞生长在细胞表面发现的受体与激素、蛋白质和其他分子结合,帮助细胞对其环境做出反应。麻省理工学院(MIT)的化学家们现在发现了这些受体中的一个在与目标结合时如何改变其形状,以及这些变化如何导致细胞的生长和增殖。这种受体被称为表皮生长因子受体(EGFR),在许多类型的癌症中被过度表达。事实上,它是几种癌症药物的目标。尽管这些药物一开始往往效果很好,但肿瘤会对它们产生抗药性。麻省理工学院化学系副教授GabrielaSchlau-Cohen说,更好地了解这些受体的机制可能有助于研究人员设计出能够规避这种抗性的药物。她说:“思考针对表皮生长因子受体的更普遍的机制是一个令人兴奋的新方向,并给你一个新的途径来思考可能的疗法,这些疗法可能不那么容易进化出抗药性。”Schlau-Cohen和Pfizer-Laubach化学职业发展助理教授张斌(音译)是这项研究的资深作者,该研究最近发表在《自然通讯》杂志上。论文的主要作者是麻省理工学院的研究生ShwethaSrinivasan和前麻省理工学院博士后RajuRegmi。EGFR是帮助细胞生长调节的许多受体之一。它存在于大多数类型的哺乳动物上皮细胞上,这些细胞排列在身体表面和器官上,除了EGF之外,还能对几种类型的生长因子做出反应。一些类型的癌症,特别是肺癌和胶质母细胞瘤,过度表达EGFR,这可能导致不受控制的生长。像大多数细胞受体一样,EGFR跨越了细胞膜。受体的细胞外区域与其目标分子(也称为配体)相互作用;跨膜部分嵌入膜内;而细胞内部分则与控制生长途径的细胞机器相互作用。受体的细胞外部分已被详细分析,但跨膜和细胞内部分一直难以研究,因为它们更无序,不能被结晶化。大约五年前,Schlau-Cohen开始尝试进一步了解这些鲜为人知的结构。她的研究小组将这些蛋白质嵌入到一种特殊的自组装膜中,这种膜被称为纳米盘,模仿细胞膜。然后,她使用单分子荧光共振能量转移(FRET)来研究当受体与EGF结合时其构象如何变化。FRET通常用于测量两个荧光分子之间的微小距离。研究人员用两种不同的荧光团标记了纳米盘膜和蛋白质的细胞内尾巴末端,这使得他们能够在各种情况下测量蛋白质尾巴和细胞膜之间的距离。令他们惊讶的是,科学家们发现,EGF的结合导致了受体构象的重大变化。大多数受体信号的模型涉及多个跨膜螺旋的相互作用,以带来大规模的构象变化,但EGF受体在膜内只有一个螺旋段,似乎在不与其他受体分子相互作用的情况下发生了这种变化。Schlau-Cohen说:“单一的α螺旋能够传递如此大的构象重排的想法确实让我们感到惊讶。”为了进一步了解这种形状变化将如何影响受体的功能,Schlau-Cohen的实验室与张斌合作,后者的实验室对分子相互作用进行计算机模拟。这种建模被称为分子动力学,可以模拟一个分子系统如何随时间变化。该模型显示,当受体与EGF结合时,受体的细胞外部分垂直竖立,而当受体未被结合时,它平躺在细胞膜上。类似于铰链的关闭,当受体平放时...PC版:https://www.cnbeta.com/articles/soft/1311673.htm手机版:https://m.cnbeta.com/view/1311673.htm

🔍 发送关键词来寻找群组、频道或视频。

启动SOSO机器人