科学家开发出标记技术"NeuM" 可实时监测神经元的变化

科学家开发出标记技术"NeuM"可实时监测神经元的变化韩国科学技术院(KIST)脑科学研究所的KimYunKyung博士领导的研究团队与浦项科技大学ChangYoung-Tae教授的团队合作,宣布开发出名为NeuM的新一代神经元标记技术。NeuM(神经元膜选择性)可选择性地标记神经元膜,使神经元结构可视化,并可实时监测神经元的变化。韩国科学技术院金润京博士团队的研究人员正在利用下一代神经元标记技术"NeuM",对神经元进行实时可视化,并检查高分辨率图像。资料来源:韩国科学技术院神经元不断改变其结构和功能,将信息从感觉器官传递到大脑,从而调节思维、记忆和行为。因此,要克服神经退行性疾病,就必须开发能选择性标记活体神经元以进行实时监测的技术。然而,目前常用于观察神经元的基于基因和抗体的标记技术,由于依赖于特定的基因表达或蛋白质,存在准确性低和难以长期追踪的问题。NeuM是研究小组通过对神经元细胞进行分子设计而开发的,与神经元膜具有极佳的结合亲和力,可对神经元进行长期跟踪和高分辨率成像。NeuM中的荧光探针利用活细胞的活性与神经元膜结合,在特定波长光的激发下发出荧光信号。这种神经元膜可视化技术允许对神经元终端结构进行详细观察,并对神经元分化和相互作用进行高分辨率监测。选择性标记神经元膜的分子设计。资料来源:韩国科学技术院NeuM是第一种通过活体神经元的内吞作用对细胞膜进行染色的技术,它对活体细胞具有选择性反应,排除了未内吞的死细胞。此外,研究团队还成功地将神经元的观察时间从短短6小时延长至72小时,从而能够捕捉活体神经元在较长时间内随环境变化而发生的动态变化。NeuM有望为目前尚无特效疗法的神经退行性疾病的研究和治疗开发提供洞察力。包括阿尔茨海默氏症在内的这些疾病是由于淀粉样蛋白等有毒蛋白质的产生和炎症物质的涌入造成神经元损伤的结果。NeuM对神经元变化的精确观察可有效促进对候选治疗化合物的评估。金博士表示:"此次开发的NeuM可以区分衰老和退化的神经元,成为阐明大脑退化性疾病机制和开发治疗方法的重要工具。"他进一步补充说:"未来,我们计划改进NeuM,通过设计荧光波长来区分绿色和红色等颜色,从而更精确地分析神经元。"编译来源:ScitechDaily...PC版:https://www.cnbeta.com.tw/articles/soft/1428464.htm手机版:https://m.cnbeta.com.tw/view/1428464.htm

相关推荐

封面图片

科学家改变神经元的内在行为以治疗癫痫等神经系统疾病

科学家改变神经元的内在行为以治疗癫痫等神经系统疾病SEAS生物工程助理教授、该研究的共同第一作者刘佳说:"我们设想这项技术将为神经科学和行为研究提供高时空分辨率控制神经元的新机会,并开发新的神经系统疾病治疗方法。"光遗传学,即利用光来刺激或抑制神经元,长期以来有望彻底改变研究和治疗由神经元兴奋性过高或过低引起的神经系统疾病。然而,目前的光遗传学技术只能在短期内改变神经元的兴奋性。一旦灯光关闭,神经元就会恢复到原来的行为。纳米技术的最新进展,包括刘和他的团队开创的灵活、可植入的纳米电子技术,有可能长期改变神经元的行为,但这些设备需要植入大脑,而且不能被编程为针对参与疾病的特定神经元。一个神经元的兴奋性由两个主要部分控制--其离子通道的传导性和细胞膜储存电荷的能力,即电容。大多数光遗传学技术以离子通道的传导性为目标,通过打开或关闭一组特定的通道来调控神经元的兴奋性。这种方法可以有效地调整神经元的兴奋性,但只是暂时的。可以把神经元想象成一个电阻-电容电路,把细胞膜想象成一个电介质材料。就像任何电路一样,如果改变材料的电容--在这种情况下是细胞膜--可以长期改变电路的内在兴奋性,从高兴奋性变为低兴奋性,反之亦然。为了改变细胞膜的电容,刘佳与麻省理工学院化学系ThomasD.andVirginiaCabot助理教授XiaoWang合作,使用了对光敏感的酶,这些酶可以在细胞膜的表面触发绝缘或导电聚合物的形成。这些酶可以被设计成针对特定神经元的细胞膜,酶附着在指定的膜上,研究人员使用蓝色波长的光照亮神经元,在几分钟内触发膜上绝缘或导电涂层的生成。他们证明,具有绝缘聚合物涂层的神经元变得更加兴奋,而具有导电聚合物涂层的神经元变得不那么兴奋。研究人员发现,他们可以通过调整光照时间来调整兴奋性--神经元暴露在光照下的时间越长,涂层的绝缘性或导电性就越强。研究小组还表明,兴奋性的变化持续了三天--只要他们能在培养皿中保持神经元的活力。接下来,研究小组的目标是用脑组织切片和动物来测试这种方法。这项工作的总体目标是实现范式转变,将功能材料、结构和设备整合到具有亚细胞和细胞类型特异性的活体神经系统中,这将允许精确操纵亚细胞电化学特性,重塑活体神经系统中神经元的兴奋性。...PC版:https://www.cnbeta.com.tw/articles/soft/1335951.htm手机版:https://m.cnbeta.com.tw/view/1335951.htm

封面图片

科学家发现成人大脑中生成新的神经元的原理

科学家发现成人大脑中生成新的神经元的原理齿状回(大脑颞叶海马结构的一部分)中新产生的神经元(红色)与细胞核(蓝色)和未成熟神经元的标记物(绿色)。资料来源:Knobloch实验室-UNIL成年大脑的一些区域含有静止的或休眠的神经干细胞,它们有可能被重新激活以形成新的神经元。然而,人们对从静止状态到增殖的过渡仍然知之甚少。由日内瓦大学(UNIGE)和洛桑大学(UNIL)的科学家领导的一个团队发现了细胞代谢在这一过程中的重要性,并确定了如何唤醒这些神经干细胞并重新激活它们。生物学家们成功地增加了成年甚至老年小鼠大脑中新神经元的数量。这些结果对治疗神经退行性疾病很有希望,将在《科学进展》杂志上发现。这种生物现象被称为成人神经生成,对学习和记忆过程等特定功能非常重要。然而,在成人大脑中,这些干细胞变得更加沉默或''休眠'',并降低了它们的更新和分化能力。因此,随着年龄的增长,神经发生明显减少。日内瓦大学理学院分子和细胞生物学系名誉教授让-克劳德-马蒂努(Jean-ClaudeMartinou)和生物和医学系生物医学科学副教授马伦-克诺布洛赫(MarlenKnobloch)的实验室发现了一种代谢机制,成年NSCs可以从其休眠状态出现并变得活跃。"我们发现线粒体--细胞内产生能量的细胞器--参与调节成年NSCs的激活水平,"UNIL的研究员FrancescoPetrelli和ValentinaScanDELLa,这项研究的共同第一作者表示。线粒体丙酮酸转运体(MPC)是Martinou教授小组11年前发现的一种蛋白质复合物,在这种调节中发挥着特殊作用。它的活性影响着细胞可以使用的代谢选择。通过了解区分活跃细胞和休眠细胞的代谢途径,科学家可以通过改变线粒体代谢来唤醒休眠细胞。现在,生物学家已经通过使用化学抑制剂或通过生成Mpc1基因的突变小鼠来阻断MPC的活性。利用这些药理学和遗传学方法,科学家们能够激活休眠的NSCs,从而在成年甚至老年小鼠的大脑中产生新的神经元。通过这项研究工作表明,代谢途径的重定向能够直接影响成年NSCs的活动状态,从而影响新神经元的生成数量,该研究的共同第一作者Knobloch教授总结说。"这些结果为细胞代谢在调节神经发生方面的作用提供了新的启示。从长远来看,这些结果可能会带来对抑郁症或神经退行性疾病等疾病的潜在治疗方案。"该研究的共同主要作者Jean-ClaudeMartinou总结道。...PC版:https://www.cnbeta.com.tw/articles/soft/1348035.htm手机版:https://m.cnbeta.com.tw/view/1348035.htm

封面图片

新发现的生物标记物对神经元再生有预测能力

新发现的生物标记物对神经元再生有预测能力神经元是构成我们大脑和脊髓的主要细胞,是受伤后再生最慢的细胞之一,许多神经元无法完全再生。尽管科学家在理解神经元再生方面取得了进展,但仍不清楚为什么有些神经元能够再生而另一些神经元却不能。加州大学圣地亚哥分校医学院的研究人员利用单细胞RNA测序(一种确定单个细胞中哪些基因被激活的方法)发现了一种新的生物标记,可用于预测神经元在受伤后是否会再生。他们在小鼠身上测试了他们的发现,发现该生物标志物在整个神经系统和不同发育阶段的神经元中始终可靠。该研究于2023年10月16日发表在《Neuron》杂志上。“单细胞测序技术正在帮助我们比以往任何时候都更详细地了解神经元的生物学,这项研究确实证明了这种能力,”资深作者、神经科学系教授郑滨海博士说。加州大学圣地亚哥分校医学院。“我们在这里发现的可能只是基于单细胞数据的新一代复杂生物标记物的开始。”研究人员重点关注皮质脊髓束的神经元,这是中枢神经系统的关键部分,有助于控制运动。受伤后,这些神经元是最不可能再生轴突的神经元之一——轴突是神经元用来相互交流的又长又薄的结构。这就是为什么大脑和脊髓损伤如此具有破坏性。神经元(此处以红色和黄色显示)是受伤后再生最慢的细胞之一。在小鼠大脑的这一部分中,黄色神经元正在再生,而红色神经元则无法再生。图片来源:加州大学圣地亚哥分校健康科学第一作者HugoKim博士说:“如果你的手臂或腿部受伤,这些神经可以再生,并且通常可以完全恢复功能,但中枢神经系统的情况并非如此。大多数大脑和脊髓损伤很难恢复,因为这些细胞的再生能力非常有限。”识别生物标志物研究人员利用单细胞RNA测序来分析脊髓损伤小鼠神经元的基因表达。他们利用现有的分子技术鼓励这些神经元再生,但最终,这只对部分细胞有效。这种实验设置使研究人员能够比较再生和非再生神经元的测序数据。此外,通过关注相对较少的细胞(仅超过300个),研究人员能够非常仔细地观察每个细胞。“就像每个人都是不同的一样,每个细胞都有自己独特的生物学特性,”郑说。“探索细胞之间的微小差异可以告诉我们很多关于这些细胞如何工作的信息。”HugoKim博士(左)在郑滨海博士(右)的监督下设计并执行了单细胞RNA测序实验。图片来源:加州大学圣地亚哥分校健康科学研究人员使用计算机算法分析测序数据,确定了一种独特的基因表达模式,可以预测单个神经元在受伤后是否最终会再生。该模式还包括一些以前从未涉及神经元再生的基因。“这就像神经元再生的分子指纹,”郑补充道。验证再生分类器为了验证他们的发现,研究人员在26个已发表的单细胞RNA测序数据集上测试了这种分子指纹(他们将其命名为再生分类器)。这些数据集包括来自神经系统各个部分和不同发育阶段的神经元。研究小组发现,除了少数例外,再生分类器成功预测了单个神经元的再生潜力,并能够重现先前研究中的已知趋势,例如出生后神经元再生的急剧下降。“根据来自完全不同研究领域的多组数据验证结果告诉我们,我们已经发现了有关神经元再生的基础生物学的一些基本知识,”郑说。“我们需要做更多的工作来完善我们的方法,但我认为我们已经发现了一种对所有再生神经元都通用的模式。”虽然小鼠身上的结果很有希望,但研究人员提醒说,目前再生分类器是一种帮助实验室神经科学研究人员的工具,而不是诊所患者的诊断测试。“在临床环境中使用单细胞测序仍然存在很多障碍,例如成本高、分析大量数据困难,以及最重要的是,无法获取感兴趣的组织,”郑说。“目前,我们有兴趣探索如何在临床前环境中使用再生分类器来预测新再生疗法的有效性,并帮助这些疗法更接近临床试验。”...PC版:https://www.cnbeta.com.tw/articles/soft/1391581.htm手机版:https://m.cnbeta.com.tw/view/1391581.htm

封面图片

科学家发现帮助瘫痪病人重新行走的神经元

科学家发现帮助瘫痪病人重新行走的神经元一个小型装置被植入病人的脊髓附近,利用电脉冲刺激控制腿部运动的神经元。在过去十年中,研究人员对该技术进行了大量改进,显示出稳步提高的效果,帮助以前完全瘫痪的病人移动他们的腿,站立,甚至使用拐杖和框架等辅助工具行走。在一个名为NeuroRestore的研究中心的新临床试验中,九名患者恢复了行走能力,而且他们的运动功能改善甚至在康复过程结束后仍然持续。最重要的是,即使在电刺激设备关闭后,他们仍然可以行走,这是以前的研究中无法达到的一个里程碑。这表明用于行走的神经纤维发生了某种程度的重组,因此科学家们在小鼠和分子模型中调查了具体机制,以了解这种情况是否以及如何发生。九名瘫痪病人在接受硬膜外电刺激治疗后重新获得了行走的能该团队创建了脊髓的三维"地图",直至单个神经元,并观察哪些神经元被电刺激所激活。他们将范围缩小到一个特定的神经元家族,这些神经元表达一种叫做Vsx2的基因。耐人寻味的是,这些神经元通常对健康人的行走并不重要,但它们似乎对受伤后重组神经纤维以修复运动功能至关重要。为了测试这一想法,研究小组随后使用了一种新版本的硬膜外植入物,它不仅刺激了脊髓,而且专门停用了Vsx2神经元。在对小鼠的测试中,那些有脊柱损伤的小鼠立即停止了行走,但健康的小鼠仍然可以正常行走。该团队表示,这项实验验证了Vsx2神经元作为硬膜外电刺激治疗瘫痪的目标。这最终可能会导致更有效的疗法,让人们重新行动。这项研究发表在《自然》杂志上。...PC版:https://www.cnbeta.com.tw/articles/soft/1332361.htm手机版:https://m.cnbeta.com.tw/view/1332361.htm

封面图片

科学家以前所未有的"实时"视角揭示大脑的复杂性

科学家以前所未有的"实时"视角揭示大脑的复杂性要掌握这种复杂程度的信息极具挑战性,因此我们必须采用先进的技术,在微观层面上解码大脑内部发生的微小而复杂的相互作用。因此,成像技术成为神经科学领域的关键工具。约翰-丹泽尔(JohannDanzl)在国际科学与技术协会(ISTA)的研究小组开发的新型成像和虚拟重建技术是大脑活动成像技术的一大飞跃,并被恰当地命名为LIONESS-即实时信息优化纳米镜成像技术(LiveInformationOptimizedNanoscopyEnablingSaturatedSegmentation)。LIONESS是一个用于成像、重建和分析活体脑组织的管道,其全面性和空间分辨率是迄今为止无法实现的。a:复杂的神经元环境b:LIONESS可以对样本进行成像和重建,从而阐明活体脑组织中的许多动态结构和功能。资料来源:JohannDanzl"有了LIONESS,我们第一次有可能对活脑组织进行全面、密集的重建。通过对组织进行多次成像,LIONESS让我们能够观察和测量大脑中的动态细胞生物学过程,"第一作者PhilippVelicky说。"输出结果是细胞排列的三维重建图像,时间是第四维,因为样本可以在几分钟、几小时或几天内成像。"LIONESS的优势在于精良的光学技术和构成其核心的两级深度学习(一种人工智能方法):第一级提高图像质量,第二级识别密集神经元环境中的不同细胞结构。该管道是丹泽尔小组、比克尔小组、乔纳斯小组、诺瓦里诺小组、ISTA科学服务单位以及其他国际合作者的合作成果。"ISTA的约翰-丹兹尔(JohannDanzl)说:"我们的方法是组建一个充满活力的科学家小组,他们拥有独特的跨学科综合专长,共同致力于填补脑组织分析领域的技术空白。重建活体脑组织的管道。通过优化的激光聚焦采集显微镜图像--图像处理(DL)--分割(DL)--三维视觉分析。图片来源:JohannDanzl跨越障碍以前可以通过电子显微镜重建脑组织。这种方法根据样本与电子的相互作用对样本进行成像。尽管电子显微镜能捕捉几纳米(百万分之一毫米)分辨率的图像,但它要求样本固定在一种生物状态,需要对样本进行物理切片才能获得三维信息。因此,无法获得动态信息。另一种以前已知的技术是光学显微镜,它可以通过"光学"而不是物理切片来观察活体系统和记录完整的组织体积。然而,由于光波产生图像的特性,光显微镜的分辨率受到严重影响。其最佳分辨率为几百纳米,过于粗糙,无法捕捉脑组织中重要的细胞细节。利用超分辨率光学显微镜,科学家们可以打破这一分辨率障碍。这一领域的最新研究成果被称为"超分辨率阴影成像"(SUSHI,Super-resolutionShadowImaging),它表明,在细胞周围的空间中涂抹染料分子,并应用获得诺贝尔奖的超分辨率技术STED(受激辐射损耗)显微镜,就能显示出所有细胞结构的超分辨率"阴影",从而将它们在组织中可视化。LIONESS可以对样本进行成像和重建,从而阐明活体脑组织中的许多动态结构和功能。资料来源:朱莉娅-柳奇克(JuliaLyudchikISTA)尽管如此,要想通过提高分辨率来对整个体积的脑组织进行成像,从而与脑组织复杂的三维结构相匹配,这一直是不可能的。这是因为在提高分辨率的同时,还需要对样本进行高负荷的成像光照,这可能会损坏或"损坏"微妙的活体组织。这就是LIONESS的优势所在,根据作者的说法,LIONESS是在"快速、温和"的成像条件下开发的,因此能保持样本的活力。该技术在提供各向同性超分辨率的同时--即在所有三个空间维度上都同样出色--还能以三维纳米级分辨率的细节观察组织的细胞成分。在成像步骤中,LIONESS从样本中收集的信息越少越好。随后进行第一个深度学习步骤,在称为"图像复原"的过程中填充有关脑组织结构的额外信息。通过这种创新方式,它可以实现约130纳米的分辨率,同时又足够温和,可以对活脑组织进行实时成像。这些步骤共同实现了深度学习的第二步,这一次是让极其复杂的成像数据变得有意义,并以自动化的方式识别神经元结构。ISTA科学家约翰-丹兹尔(JohannDanzl)在奥地利科技研究所的实验室中。图片来源:NadinePoncioniISTA定位Danzl说:"跨学科的方法使我们能够打破解析力和活体系统光照的相互交织限制,使复杂的三维数据变得有意义,并将组织的细胞结构与分子和功能测量结合起来。"在虚拟重建方面,Danzl和Velicky与视觉计算专家合作:ISTA的Bickel小组和哈佛大学HanspeterPfister领导的小组,他们在自动分割(自动识别组织中的细胞结构的过程)和可视化方面贡献了自己的专业知识,ISTA的图像分析科学家ChristophSommer也提供了进一步的支持。在复杂的标记策略方面,来自爱丁堡、柏林和国际科学与技术机构的神经科学家和化学家也做出了贡献。因此,在同一活体神经元回路中进行功能测量(即读出细胞结构和生物信号活动)成为可能。这项工作是通过与ISTA的Jonas小组合作,对进入细胞的钙离子通量进行成像并测量细胞电活动来完成的。小组提供了人脑有机体,这种有机体通常被昵称为迷你大脑,可以模拟人脑的发育过程。作者强调,所有这一切都得益于ISTA顶尖科学服务部门的专业支持。大脑的结构和活动是高度动态的;其结构随着大脑执行和学习新任务而不断演变。大脑的这一特性通常被称为"可塑性"。因此,观察大脑组织结构的变化对于揭开其可塑性背后的秘密至关重要。国际科学与技术协会开发的新工具通过揭示亚细胞结构并捕捉这些结构如何随时间发生变化,显示出了解脑组织以及其他潜在器官功能结构的潜力。...PC版:https://www.cnbeta.com.tw/articles/soft/1382361.htm手机版:https://m.cnbeta.com.tw/view/1382361.htm

封面图片

中国科学家开发出癌症靶向治疗新技术:相控阵全息声镊系统

中国科学家开发出癌症靶向治疗新技术:相控阵全息声镊系统使用PAHAT对细胞进行体内操作的示意图。资料来源:SIAT这项研究最近发表在《自然-通讯》(NatureCommunications)杂志上。相控阵全息声镊系统示意图。资料来源:SIAT由于各种组织、器官、骨骼、血管和血流的特性各不相同,体内环境极其复杂。如此复杂的环境带来了巨大的挑战:如何利用声学方法"捕获"细菌,使其对肿瘤产生治疗效果?研究小组利用全息声场研究了复杂环境中的动态目标操控。他们随后开发了一种高密度超声换能器阵列,从而能够产生强大的梯度声场,并实现精确的时空控制。使用PAHAT在体内操纵细胞的设置图。资料来源:SIAT随后,研究人员利用基因编辑技术在细菌细胞中创建了亚微米级的气泡,从而提高了它们对声波的敏感度。在声场辐射力的影响下,这些基因工程细菌形成了菌簇。通过将显微成像与PAHAT相结合,研究人员在活体小鼠体内实现了对细菌集群的精确操纵,从而展示了一种在癌症治疗中进行靶向药物递送和细胞疗法的可行方法。该研究的共同通讯作者马腾教授说,研究人员可以"精确控制细菌按照预定路径到达病灶",而该研究的共同通讯作者严飞教授则说,这种操纵技术改善了肿瘤内的菌群聚集,从而有效减缓了肿瘤的生长。郑教授说:"PAHAT实现了对生物体内细胞的非接触式精确操控。结合功能细胞和细胞球体,它在免疫疗法、组织工程、靶向给药等领域具有巨大潜力"。...PC版:https://www.cnbeta.com.tw/articles/soft/1376377.htm手机版:https://m.cnbeta.com.tw/view/1376377.htm

🔍 发送关键词来寻找群组、频道或视频。

启动SOSO机器人