二氧化铪原子结构如何成为神经形态计算的基础?

二氧化铪原子结构如何成为神经形态计算的基础?这张图片展示了哈夫纳原子结构的艺术印象。图片来源:经《施普林格-自然》授权转载格罗宁根大学功能纳米材料教授BeatrizNoheda对这种材料进行了研究,最近为《自然-材料》杂志撰写了一篇关于其特性的透视文章。她说:"尽管我们并不了解所有的物理学原理,但它已经被应用于设备中。这位是荷兰格罗宁根大学功能纳米材料教授兼格罗宁根认知系统与材料中心科学主任比阿特丽斯-诺赫达(BeatrizNoheda)。她是《自然-材料》(NatureMaterials)上发表的关于氧化铪铁电体的透视论文的主要作者。资料来源:格罗宁根大学为了创建更高效的计算机,需要快速的非易失性随机存取存储器(RAM)。铁电材料似乎是很好的候选材料。这些材料由带有偶极子的单元组成,在电场的作用下会集体切换。然而,如果单元数量太少,它们的特性就会崩溃;自发去极化会在大约90纳米以下发生。氧空位是一个例外。BeatrizNoheda说:"这或多或少是偶然发现的。哈夫纳在高温和恶劣环境中非常稳定,传统上用于冶金和化学工程行业。然而,当无定形哈夫纳被证明是晶体管中非常高效的栅极绝缘体时,它引起了微芯片制造商的注意。用哈夫纳取代传统的氧化硅,可以使晶体管变得更小。"Noheda对这种材料的兴趣源于她在格罗宁根认知系统与材料中心(CogniGron)的工作,她是该中心的科学主任。CogniGron的目标是创建神经形态计算架构。Hafnia是该中心研究的材料之一。"在《科学》杂志于2021年发表的一篇论文中,我们描述了开关是如何不仅仅通过偶极子发生的。我们发现氧空位的移动也发挥了作用,"Noheda说。根据她的经验,她应邀在《自然-材料》杂志的一篇视角文章中讨论了从哈夫尼亚汲取的经验教训。哈夫纳的行为类似于铁电体,但它只在纳米尺度上保持其特性。"铁电体似乎已经退出了超小型非易失性RAM的竞争,但有了hafnia,它们现在处于领先地位"。尽管如此,哈夫纳的行为似乎并不完全像铁电体,如前所述,氧空位的移动似乎对其特性至关重要。Noheda还指出了另一个需要考虑的概念:纳米粒子的表面能。"相图显示,这些颗粒相对较大的表面积在二氧化铪中产生了相当于极高的压力,这似乎在这种材料的特性中发挥了作用。这类知识对于寻找与铪表现相似的其他材料非常重要。由于全球供应量太少,铪不是微型芯片生产中最可持续的选择。通过寻找具有类似特性的材料,我们可能会找到更好的候选材料。锆就是其中一种选择。"找到铪的可持续替代品可以加速铁电材料在RAM存储器中的应用。由于偶极子的强度取决于产生偶极子的电场的历史,因此它将是生产忆阻器的理想材料。这种模拟设备的行为类似于我们大脑中的神经元,是神经形态计算机架构的候选材料。"我们正在努力开发这种神经形态芯片。但首先,我们必须充分了解二氧化铪和类似材料的物理特性"。...PC版:https://www.cnbeta.com.tw/articles/soft/1382835.htm手机版:https://m.cnbeta.com.tw/view/1382835.htm

相关推荐

封面图片

太阳光制甲醇:利用铜和氮化碳实现革命性的二氧化碳转化

太阳光制甲醇:利用铜和氮化碳实现革命性的二氧化碳转化研究人员开发出一种利用铜和纳米氮化碳晶将二氧化碳高效转化为甲醇的阳光动力工艺,标志着向可持续燃料生产和减少二氧化碳迈出了重要一步。上图为测试催化剂将二氧化碳转化为甲醇的反应器。资料来源:诺丁汉大学效率和选择性的挑战在光催化过程中,光线照射到半导体材料上会激发电子,使电子穿过材料与二氧化碳和水发生反应,从而产生各种有用的产品,包括作为绿色燃料的甲醇。尽管最近取得了一些进展,但这一过程仍存在效率和选择性不足的问题。二氧化碳是导致全球变暖的最大因素。虽然可以将二氧化碳转化为有用的产品,但传统的热法依赖于化石燃料中的氢气。利用可持续的太阳能和无处不在的丰富水资源,开发基于光催化和电催化的替代方法非常重要。改进催化的纳米级控制诺丁汉大学化学学院研究员马达萨米-坦加穆图(MadasamyThangamuthu)博士是研究小组的共同负责人:"光催化使用的材料种类繁多。光催化剂吸收光并高效分离电荷载流子非常重要。在我们的方法中,我们在纳米尺度上控制材料。我们开发了一种新形式的氮化碳,它具有结晶纳米级畴,能够与光进行高效互动,并实现充分的电荷分离。光将二氧化碳转化为甲醇(燃料)的过程。资料来源:诺丁汉大学研究人员设计了一种将氮化碳加热到所需结晶度的工艺,最大限度地提高了这种材料在光催化方面的功能特性。利用磁控溅射技术,他们在无溶剂过程中沉积了原子铜,使半导体和金属原子得以亲密接触。令人惊喜的效率提升在诺丁汉大学化学学院开展实验工作的博士生塔拉-勒梅尔(TaraLeMercier)说:"我们测量了光产生的电流,并以此作为判断催化剂质量的标准。即使不加铜,新型氮化碳的活性也比传统氮化碳高44倍。然而,出乎我们意料的是,每1克氮化碳中只需添加1毫克铜,效率就提高了四倍。最重要的是,选择性从甲烷(另一种温室气体)变成了甲醇(一种宝贵的绿色燃料)"。诺丁汉大学化学学院的AndreiKhlobystov教授说:"二氧化碳价值化是英国实现净零排放目标的关键。确保我们用于这一重要反应的催化剂材料的可持续性至关重要。这种新型催化剂的一大优势在于它由可持续元素组成--碳、氮和铜--这些元素在我们的星球上都非常丰富。"本发明是深入了解二氧化碳转化过程中光催化材料的重要一步。它开辟了一条创造高选择性和可调整催化剂的途径,通过在纳米尺度上控制催化剂,可以调高所需的产物。编译自:ScitechDaily...PC版:https://www.cnbeta.com.tw/articles/soft/1425280.htm手机版:https://m.cnbeta.com.tw/view/1425280.htm

封面图片

释放粘土的力量:它可以是捕获空气中二氧化碳的关键吗?

释放粘土的力量:它可以是捕获空气中二氧化碳的关键吗?桑迪亚国家实验室的生物工程师SusanRempe(左)和化学工程师TuanHo通过一种粘土的化学结构的艺术表现进行观察。他们的团队正在研究如何利用粘土来捕获二氧化碳。资料来源:克雷格-弗里茨/桑迪亚国家实验室照片在桑迪亚化学工程师TuanHo的领导下,该团队一直在使用强大的计算机模型,结合实验室实验,研究一种粘土如何吸收和储存二氧化碳。科学家们在本周早些时候发表在《物理化学快报》上的一篇论文中分享了他们的初步发现。该论文的主要作者Ho说:"这些基本发现有可能用于直接空气捕集;这就是我们正在努力的方向。粘土真的很便宜,而且在自然界中很丰富。如果这个高风险、高回报的项目最终产生了一项技术,这应该使我们能够大大降低直接空气碳捕获的成本。"为什么要捕获碳?碳捕获和封存是指从地球大气层中捕获多余的二氧化碳并将其储存在地下深处的过程,目的是减少气候变化的影响,如更频繁的严重风暴、海平面上升以及干旱和野火增加。这种二氧化碳可以从燃烧化石燃料的发电厂或其他工业设施(如水泥窑),或直接从空气中捕获,这在技术上更具挑战性。碳捕集和封存被广泛认为是正在考虑用于气候干预的最没有争议的技术之一。桑迪亚生物工程师和该项目的高级科学家SusanRempe说:"我们想要低成本的能源,而不破坏环境。我们可以以一种不产生那么多二氧化碳的方式生活,但我们不能控制我们的邻居做什么。直接空气碳捕获对于减少空气中的二氧化碳数量和减轻我们邻居释放的二氧化碳非常重要。"Ho想象,基于粘土的设备可以像海绵一样用来吸收二氧化碳,然后二氧化碳可以从海绵中"挤"出来并被抽到地下深处。或者粘土可以更像一个过滤器,从空气中捕捉二氧化碳进行储存。除了便宜和广泛使用之外,粘土还很稳定,并且有很高的表面积--它由许多微小的颗粒组成,而这些颗粒又有比人类头发直径小十万倍的裂缝和缝隙。Rempe说,这些微小的空腔被称为纳米孔,化学性质可以在这些纳米级的孔隙中发生变化。这并不是Rempe第一次研究用于捕获二氧化碳的纳米结构材料。事实上,她是一个研究将二氧化碳转化为水稳定的碳酸氢盐的生物催化剂的团队的成员,该团队定制了一个极薄的纳米结构的膜来保护生物催化剂,并为他们受生物启发的碳捕捉膜获得了专利。当然,这种膜不是用廉价的粘土制成的,最初是为了在燃烧化石燃料的发电厂或其他工业设施中发挥作用,Rempe说。"这是同一个问题的两个互补的可能解决方案,"她说。如何模拟纳米尺度?分子动力学是一种计算机模拟,研究原子和分子在纳米级的运动和相互作用。通过观察这些相互作用,科学家可以计算出一个分子在特定环境中的稳定性--例如在充满水的粘土纳米孔中。"分子模拟确实是研究分子尺度上的相互作用的有力工具,"Ho说。"它使我们能够充分了解二氧化碳、水和粘土之间发生了什么,目标是利用这些信息来设计一种粘土材料,用于碳捕捉应用。"在这种情况下,分子动力学模拟表明,二氧化碳在潮湿的粘土纳米孔中可以比在普通水中更稳定。这是因为水里的原子不能均匀地分享它们的电子,使得一端略带正电,另一端略带负电。另一方面,二氧化碳中的原子确实均匀地分享它们的电子,就像油与水混合一样,二氧化碳在类似的分子附近更稳定,例如粘土的硅氧区域。由CliffJohnston教授领导的普渡大学的合作者最近用实验证实,限制在粘土纳米孔中的水比普通水吸收更多的二氧化碳。桑迪亚博士后研究员NabankurDasgupta也发现,在纳米孔的油状区域内,将二氧化碳转化为碳酸所需的能量较少,与普通水的相同转化相比,使反应更有利,Ho补充说,通过使这种转换变得有利并需要更少的能量,最终粘土纳米孔的油状区域使其有可能捕获更多的二氧化碳并更容易地储存它。"到目前为止,这告诉我们粘土是一种捕捉二氧化碳并将其转化为另一种分子的好材料,"Rempe说。"而且我们了解了这是为什么,这样合成人员和工程师就可以修改材料,以增强类似油的表面化学性质。模拟也可以指导实验,以测试关于如何促进二氧化碳转化为其他有价值分子的新假设"。该项目的下一步将是利用分子动力学模拟和实验来弄清如何将二氧化碳重新从纳米孔中取出。在三年项目结束时,他们计划构想出一个基于粘土的直接空气碳捕获装置。...PC版:https://www.cnbeta.com.tw/articles/soft/1346445.htm手机版:https://m.cnbeta.com.tw/view/1346445.htm

封面图片

科学家意外发现二氧化钒具有类似大脑的“记忆”能力

科学家意外发现二氧化钒具有类似大脑的“记忆”能力来自瑞士洛桑联邦理工学院(EPFL)的科学家们意外地发现,一种用于电子产品的材料可以“记住”它以前的物理刺激的历史。如果以正确的方式加以利用,这种材料及其新颖的行为可能会对电子设备的记忆产生巨大影响。这是第一个拥有这种能力的已知材料,但其他材料也可能存在。博士生MohammadSamizadehNikoo正在研究二氧化钒的相变--具体而言,材料从一种状态过渡到另一种状态需要多长时间。当该材料达到68摄氏度时,它经历了一个从绝缘体到金属的相变。他的测试涉及到向材料施加电流,当它从一边移动到另一边时,电流会加热它(并导致它改变状态)。一旦电流通过,材料就会冷却并恢复到其原始状态。在记录了数百次测量后,Nikoo发现了该材料结构中的“记忆”效应。当对该材料施加第二个电流脉冲时,他注意到它改变相变的时间与它的历史直接相关。ElisonMatioli教授说:“二氧化硅似乎‘记住’了第一个相变,并预见到了下一个相变,”他是这一发现的实验室负责人。“我们没有想到会看到这种‘记忆’效应,它与电子状态无关,而是与材料的物理结构有关,”这位教授补充说。进一步的测试显示,这种材料可以记住其最近的刺激,时间长达3小时。“记忆”效应甚至可能持续更长的时间--也许甚至是几天--但该团队没有进行这些测量所需的仪器。研究人员指出,这一发现似乎复制了大脑中发生的情况,二氧化钒“开关”就像神经元一样发挥作用。Matioli说:“没有其他材料会以这种方式表现。”一种能够通过更大的容量、小型化和速度来提高计算性能的材料将是电子制造商的福音,而二氧化钒可以做到这一点。该团队的工作已经发表在《自然》杂志上。PC版:https://www.cnbeta.com/articles/soft/1307997.htm手机版:https://m.cnbeta.com/view/1307997.htm

封面图片

中国科研团队实现二氧化碳一步合成乙醇

中国科研团队实现二氧化碳一步合成乙醇笔者16日从江南大学获悉,该校化学与材料工程学院刘小浩教授团队经过持续5年攻关,通过采用结构封装法,构筑双钯位点-纳米“蓄水”膜反应器,在国际上首次实现了二氧化碳在温和条件下连续流一步近100%转化为乙醇,相关研究成果发表于《美国化学会·催化》。乙醇,俗称“酒精”,既是重要的基础化学品,又与人们的日常生活息息相关,广泛应用于制造饮料、消毒剂、车用燃料等,并可转化为乙烯和下游高价值化工产品。刘小浩介绍,目前,在乙醇制备方面,工业上一般采用粮食发酵法和煤基乙醇技术。粮食发酵法制备乙醇不可避免出现“与人争粮”的局面,而煤基乙醇工艺路线复杂,且制造过程中产生大量的二氧化碳。近年来,国际上虽已开发出多种途径将二氧化碳转化为乙醇,但在连续流固定床反应器中制备乙醇,由于其便捷的物质流和能量流管理,更容易实现工业应用。该科研团队创新性地采用“结构封装法”精准构筑“双钯催化位点”-纳米“蓄水”膜反应器,合成的催化剂结构类似于一个胶囊,其胶囊内部封装了二氧化铈载体分散的双钯催化剂。刘小浩介绍,胶囊的壳层具有高选择性,疏水修饰后,保证内部生成的水富集而产物乙醇可以溢出。其中的水环境可以稳定双钯活性位点,该催化剂能够实现温和条件下(3MPa,240℃)二氧化碳近100%选择性高效稳定转化为乙醇。值得一提的是,该科研团队基于前期研究基础,构筑的“双钯活性位点”具有独特的几何和电子结构,其邻近的钯位点和富电子特性有利于促进中间物种碳-氧键解离和随后的碳-碳偶联,从而实现二氧化碳加氢定向生成单一高价值产物乙醇。投稿:@ZaiHuaBot频道:@TestFlightCN

封面图片

环保新突破:单原子催化剂将二氧化碳转化为乙醇

环保新突破:单原子催化剂将二氧化碳转化为乙醇串联单原子电催化剂实现二氧化碳还原成乙醇。资料来源:DICP二氧化碳还原的挑战Cn(n≥2)液体产品因其高能量密度和易于储存而备受青睐。然而,由于对机理的理解有限,C-C偶联途径的操作仍是一项挑战。最近,由张涛教授和黄延强教授领导的研究小组在美国加利福尼亚大学洛杉矶分校进行了一项突破性研究。中国科学院大连化学物理研究所的张涛和黄延强教授领导的研究小组开发了一种锡基串联电催化剂(SnS2@Sn1-O3G),在-0.9VRHE和17.8mA/cm2的几何电流密度条件下,该催化剂可重复生成乙醇,法拉第效率高达82.5%。这项研究最近发表在科学杂志《自然-能源》上。研究人员通过在三维碳泡沫上进行SnBr2和硫脲的溶热反应,制造出SnS2@Sn1-O3G。这种电催化剂由SnS2纳米片和原子分散的Sn原子(Sn1-O3G)组成。机理研究表明,这种Sn1-O3G可分别吸附*CHO和*CO(OH)中间体,从而通过一种前所未有的甲酰基-碳酸氢盐偶联途径促进C-C键的形成。此外,通过使用同位素标记的反应物,研究人员追踪了在Sn1-O3G催化剂上形成的最终C2产物中C原子的形成路径。分析表明,产物中的甲基C来自甲酸,而亚甲基C来自二氧化碳。黄教授说:"我们的研究为乙醇合成中C-C键的形成提供了一个替代平台,并为操纵二氧化碳还原途径以获得所需的产品提供了一种策略。"...PC版:https://www.cnbeta.com.tw/articles/soft/1398721.htm手机版:https://m.cnbeta.com.tw/view/1398721.htm

封面图片

地球深处的二氧化碳在气候变化中的作用可能比以前的假设更大

地球深处的二氧化碳在气候变化中的作用可能比以前的假设更大地球上绝大部分的碳被埋在其内部。这些深层的碳影响着地表附近的碳的形式和浓度,这反过来又会影响地质时期的全球气候。因此,评估有多少碳存在于地下数百公里的深层水库中是很重要的。"现有的研究集中在地球表面以上或接近地球表面的碳物种。然而,地球上90%以上的碳储存在地壳、地幔、甚至地核中,这一点却鲜为人知,"潘教授解释说。利用物理学中的第一原理模拟,他的团队发现,二氧化碳在地球深层碳循环中可能比以前认为的更加活跃,这在很大程度上影响了地球深层和近地层储层之间的碳传输。研究发现,将二氧化碳和水封闭在合适的纳米多孔矿物中可能会提高地下碳储存的效率。它表明,在碳捕集与封存工作中,将二氧化碳与水一起在纳米封存下变成岩石提供了一种安全的方法,可以将碳永久地封存在地下,并且返回大气的风险很低。这些发现最近发表在国际学术期刊《自然通讯》上。"将二氧化碳溶于水是一个日常过程,但它的普遍性掩盖了它的重要性。它对地球的碳循环有很大的影响,它深深地影响着地质时期的全球气候变化和人类的能源消耗,"潘教授说。"这是理解极端条件下二氧化碳水溶液不寻常的物理和化学特性的重要一步。"以前的研究集中在散装溶液中的溶解碳的特性。但是在地球深处或地下碳储存中,水溶液通常被限制在地球材料的孔隙、晶界和裂缝中的纳米级,空间限制和界面化学可能使溶液有根本的不同。含碳流体可以深达数百公里,这是不可能直接观察到的。在实验上,在地球深处发现的极端压力-温度条件下测量它们也是非常具有挑战性的。潘教授是该大学物理学和化学的副教授。该团队还包括博士生NoreStolte和RuiHou。他们进行了模拟,以研究二氧化碳在水中的反应,在纳米封存中的反应。他们将由石墨烯(石墨的一个原子层)和stishovite(一种高压SiO2晶体)纳米密封的碳溶液与溶解在散装溶液中的碳溶液进行比较,发现二氧化碳在纳米密封中的反应比在散装中更大。这项研究为研究地球深处水中更复杂的碳反应铺平了道路,例如钻石的形成、非生物基因石油的起源,甚至是深层生命。作为研究的下一步,该团队希望探索碳是否会进一步反应形成更复杂的分子,如有机物。潘教授开发并应用计算和数值方法,从第一原理理解和预测液体、固体和纳米结构的特性和行为。在高性能超级计算机的帮助下,他的团队为与可持续发展相关的紧迫和基本科学问题寻求答案,如水科学、深层碳循环和清洁能源。...PC版:https://www.cnbeta.com.tw/articles/soft/1337767.htm手机版:https://m.cnbeta.com.tw/view/1337767.htm

🔍 发送关键词来寻找群组、频道或视频。

启动SOSO机器人