独特的新材料可产生更强的计算和存储能力 同时大幅降低能耗

独特的新材料可产生更强的计算和存储能力同时大幅降低能耗这项研究最近发表在《自然-通讯》杂志上。正如美国最近颁布的《CHIPS和科学法案》所证明的那样,现在越来越需要增加半导体制造,并支持用于开发为各处电子设备提供动力的材料的研究。虽然传统半导体是当今大多数计算机芯片背后的技术,但科学家和工程师们一直在寻找能够以更少的能量产生更多能量的新材料,以使电子产品更好、更小、更高效。这类新型改良计算机芯片的候选材料之一是一类被称为拓扑半金属的量子材料。这些材料中的电子具有不同的行为方式,使材料具有电子设备中使用的典型绝缘体和金属所不具备的独特性质。因此,人们正在探索将这些材料用于自旋电子器件中。自旋电子器件是传统半导体器件的替代品,它利用电子的自旋而不是电荷来存储数据和处理信息。在这项新研究中,明尼苏达大学的一个跨学科研究小组成功合成了这样一种薄膜材料,并证明它具有高性能、低能耗的潜力。论文资深作者、麦克奈特大学特聘教授、明尼苏达大学电气与计算机工程系罗伯特-哈特曼讲座教授王建平说:"这项研究首次表明,利用磁性掺杂策略,可以从弱拓扑绝缘体过渡到拓扑半金属。我们正在寻找延长电子设备寿命的方法,同时降低能耗,我们正试图用非传统的、打破常规的方法来实现这一目标"。多年来,研究人员一直在研究拓扑材料,但明尼苏达大学的研究团队是第一个使用获得专利、与工业兼容的溅射工艺来制造这种薄膜形式半金属的团队。Wang说,由于他们的工艺与工业兼容,这项技术可以更容易地被采用并用于制造现实世界中的设备。"在我们的生活中,每天都在使用电子设备,从手机到洗碗机,再到微波炉。它们都使用芯片。一切都需要消耗能源,"该论文的资深作者、明尼苏达大学化学工程与材料科学系雷-约翰逊(RayD.andMaryT.Johnson)讲座教授安德烈-姆霍扬(AndreMkhoyan)说。"问题是,我们该如何最大限度地减少能源消耗?这项研究就是朝着这个方向迈出的一步。我们正在开发一类性能相似甚至更好,但能耗更低的新型材料"。由于研究人员制造出了如此高质量的材料,他们还能够仔细分析其特性以及它的独特之处。论文的资深作者、明尼苏达大学电气与计算机工程系保罗-帕姆伯格副教授托尼-刘(TonyLow)说:"从物理学角度来看,这项工作的主要贡献之一是,我们能够研究这种材料的一些最基本特性。通常情况下,当你施加磁场时,材料的纵向电阻会增大,但在这种特殊的拓扑材料中,我们预测纵向电阻会减小。我们能够将我们的理论与测量到的传输数据相印证,并证实确实存在负电阻"。十多年来,Low、Mkhoyan和Wang一直在合作研究用于下一代电子器件和系统的拓扑材料--如果没有他们各自在理论和计算、材料生长和表征以及器件制造方面的专业知识的结合,这项研究是不可能实现的。"研究这样一个重要而又具有挑战性的课题,不仅需要鼓舞人心的远见卓识,还需要跨越四个学科的极大耐心和一群敬业的团队成员,这将有可能实现该技术从实验室到工业界的过渡,"Wang说。...PC版:https://www.cnbeta.com.tw/articles/soft/1385801.htm手机版:https://m.cnbeta.com.tw/view/1385801.htm

相关推荐

封面图片

科学家用量子材料产生类似"3D眼镜"的视角将拓扑材料可视化

科学家用量子材料产生类似"3D眼镜"的视角将拓扑材料可视化研究人员利用X射线(图中绿色部分),在金属TbV6Sn6上创造出了三维电影般的效果。通过这种方法,他们成功追踪到了电子(图中的蓝色和黄色)的行为,并在理解量子材料方面向前迈进了一步。图片来源:JörgBandmann/ct.qmat)为了区分拓扑材料和传统材料,科学家们习惯于研究它们的表面电流。然而,电子的拓扑结构与其量子力学波特性和自旋密切相关。现在,这种关系已经通过光电效应得到了直接证明--在光的作用下,电子从金属等材料中释放出来。维尔茨堡ct.qmat的创始成员、该项目的理论物理学家之一乔治-桑焦万尼(GiorgioSangiovanni)教授将这一发现比作用3D眼镜来观察电子的拓扑结构。他解释说"电子和光子可以被量子力学地描述为波和粒子。因此,电子具有自旋,我们可以利用光电效应测量电子的自旋。为此,研究小组使用了圆偏振X射线光--具有转矩的光粒子。桑焦万尼详细解释道:"当光子遇到电子时,量子材料发出的信号取决于光子是右旋还是左旋。换句话说,电子自旋的方向决定了左旋光束和右旋光束之间信号的相对强度。因此,我们可以把这个实验想象成3D电影院里的偏振眼镜,在那里也会使用不同方向的光束。我们的'3D眼镜'让电子的拓扑结构清晰可见"。由维尔茨堡-德累斯顿卓越研究小组ct.qmat(量子物质中的复杂性和拓扑学)领导的这一突破性实验及其理论描述,是从拓扑学角度描述量子材料特征的首次成功尝试。桑焦万尼指出了粒子加速器在实验中的重要作用,他说:"我们需要同步加速器来产生这种特殊的X射线光,并创造出'3D电影'效果"。研究人员历时三年,终于取得了这一巨大成功。他们的起点是量子材料"Kagome"金属TbV6Sn6。在这一类特殊材料中,原子晶格混合了三角形晶格和蜂窝状晶格,其结构让人联想到日本的花篮编织。鹿目金属在ct.qmat的材料研究中发挥着重要作用。"在我们的实验同事开始同步加速器实验之前,我们需要模拟实验结果,以确保我们走在正确的轨道上。第一步,我们设计了理论模型,并在超级计算机上进行了计算,"项目负责人、理论物理学家DomenicodiSante博士说,他同时也是维尔茨堡合作研究中心(SFB)1170ToCoTronics的准成员。测量结果与理论预测完全吻合,使研究小组能够直观地看到并确认可果美的金属拓扑结构。参与该研究项目的科学家来自意大利(博洛尼亚、米兰、的里雅斯特、威尼斯)、英国(圣安德鲁斯)、美国(波士顿、圣巴巴拉)和维尔茨堡。用于模拟的超级计算机在慕尼黑,同步加速器实验在的里雅斯特进行。"Sangiovanni教授总结道:"这些研究成果完美地诠释了理论物理学和实验物理学协同工作所能产生的非凡成果。...PC版:https://www.cnbeta.com.tw/articles/soft/1373551.htm手机版:https://m.cnbeta.com.tw/view/1373551.htm

封面图片

追逐幽灵粒子:新发现可帮助回答物理学中最令人困惑的问题之一

追逐幽灵粒子:新发现可帮助回答物理学中最令人困惑的问题之一由明尼苏达大学双城分校理论物理学家领导的一个团队发现了一种寻找轴子的新方法,轴子是可以帮助解决这个谜团的假想粒子。与费米拉布国家加速器实验室的实验研究人员合作,物理学家们的新策略为在粒子对撞机实验中检测轴子开辟了以前未曾探索过的机会。研究人员的论文在美国物理学会出版的同行评审科学杂志《物理评论快报》上发表并作为编辑的建议。明尼苏达大学的研究人员寻找假设的轴子的新方法包括测量粒子"衰变"为两个μ子,这些粒子基本上是电子的较重版本--如上图所示。资料来源:明尼苏达大学的雷蒙德-科"作为粒子物理学家,我们正在努力发展我们对自然的最佳理解,"该论文的共同作者、明尼苏达大学物理和天文学学院助理教授刘震说。"在过去的一个世纪里,科学家们通过既定的理论框架在寻找基本粒子方面取得了巨大的成功。因此,中子为什么不与电场耦合是极其令人费解的,因为在我们已知的理论中,我们期望它们会这样。如果我们真的发现了轴子,这将是我们对自然界结构的基本理解的一个巨大进步。"研究亚原子粒子和可能发现新粒子的主要手段之一是对撞机实验。从本质上讲,科学家们强迫粒子束进行碰撞--当它们相互撞击时,它们产生的能量会产生其他粒子,并通过一个探测器,使研究人员能够分析它们的特性。刘和他的团队提出的方法涉及测量"衰变"产物--或者当一个不稳定的重粒子转化为两个μ介子(已知的粒子,基本上是电子的较重版本)的多个较轻粒子时会发生什么。通过从探测器中的μ子轨道向后重建这种衰变,研究人员相信他们有机会找到轴子并证明其存在。该论文的共同作者、明尼苏达大学物理和天文学学院和威廉-费恩理论物理研究所的博士后研究员RaymondCo说:"通过这项研究,我们正在扩大我们可以搜索轴子粒子的方法。人们以前从未将轴子衰变为μ子作为在中微子或对撞机实验中搜索轴子粒子的一种方式。这项研究开辟了新的可能性,为我们领域的未来努力铺平道路。"刘和Co,以及明尼苏达大学物理学和天文学博士后研究员Kun-FengLyu和加州大学伯克利分校博士后研究员SoubhikKumar是这项研究的理论部分的支持者。他们是ArgoNeuT合作的一部分,该合作汇集了来自全国各地的理论家和实验家,通过费米实验室的实验研究粒子。在这篇论文中,明尼苏达大学领导的理论团队与实验研究人员合作,利用他们的新方法和ArgoNeuT实验的现有数据进行轴子的搜索。研究人员计划在未来使用实验结果来进一步完善他们对轴子产生率的理论计算。...PC版:https://www.cnbeta.com.tw/articles/soft/1366105.htm手机版:https://m.cnbeta.com.tw/view/1366105.htm

封面图片

革命性的材料可能解决IBM和谷歌发展量子计算遇到的关键问题

革命性的材料可能解决IBM和谷歌发展量子计算遇到的关键问题分层二维材料的异质结构的形成,设想为乐高式积木锁在一起。资料来源:ElizabethFloresgomezMurray普通计算机由数十亿个晶体管组成,被称为比特,并由二进制代码("0"=关闭,"1"=打开)支配。量子比特,也被称为量子比特,是基于量子力学的,可以同时是"0"和"1"。这被称为叠加,可以使量子计算机比常规的、经典的计算机更加强大。然而,打造量子计算机有一个问题。宾夕法尼亚州立大学物理学教授、该研究的通讯作者朱俊说:"IBM、Google和其他公司正在试图制造和扩大基于超导量子比特的量子计算机。如何将经典环境的负面影响降到最低,因为经典环境会导致量子计算机的运行出现错误,这是量子计算的一个关键问题。"这个问题的解决方案可能在一种被称为拓扑量子比特的异国版本中找到。朱说:"基于拓扑超导体的量子比特有望受到超导性的拓扑方面的保护,因此对环境的破坏性影响更加强大。"拓扑量子比特与数学中的拓扑学有关,即一个结构正在经历物理变化,如被弯曲或拉伸,但仍保持其原始形式的属性。这是一种理论类型的量子比特,尚未实现,但其基本思想是,某些材料的拓扑特性可以保护量子状态不受经典环境的干扰。物理学研究生和该研究的第一作者CequnLi说,目前有很多人关注拓扑量子计算。李说:"量子计算是一个非常热门的话题,人们正在考虑如何建立一种计算中误差较小的量子计算机。拓扑量子计算机是一种吸引人的方式。但拓扑量子计算的一个关键是为它开发合适的材料。"该研究的研究人员通过开发一种称为异质结构的层状材料,在这个方向上迈出了一步。该研究中的异质结构由一层拓扑绝缘体材料,铋锑碲化物或(Bi,Sb)2Te3,和一个超导材料层:镓组成。朱说:"我们开发了一种特殊的测量技术来探测(Bi,Sb)2Te3薄膜表面的近距离诱导超导性。近距离诱导超导性是实现拓扑超导体的一个关键机制。我们的工作表明,它确实发生在(Bi,Sb)2Te3薄膜的表面。这是朝着实现拓扑超导体迈出的第一步"。然而,这样的拓扑绝缘体/超导体异质结构很难创建。因为不同的材料有不同的晶格结构。如果你把两种材料放在一起,它们可能会相互发生化学反应,最后会出现混乱的界面。因此,研究人员正在使用一种被称为约束异质外延的合成技术,该技术正在MRSEC进行探索。这涉及到在镓层和(Bi,Sb)2Te3层之间插入一层外延石墨烯,它是一层一到两个原子厚的碳原子片。这使这些层能够衔接和结合,就像把乐高积木扣在一起一样。李说:"石墨烯将这两种材料分开,并作为一个化学屏障。因此,它们之间没有反应,我们最终得到了一个非常好的界面。"此外,研究人员证明了这种技术在晶圆水平上是可扩展的,这将使它成为未来量子计算的一个有吸引力的选择。晶圆是一种圆形的半导体材料切片,作为微电子的基底。这种异质结构具有拓扑超导体的所有元素,但也许更重要的是,它是一种薄膜,而且可能是可扩展的。因此,晶圆规模的薄膜在未来的应用上有很大的潜力,例如建立拓扑量子计算机。这项研究是CNS的IRG1-二维极地金属和异质结构团队的联合努力,由朱俊和宾夕法尼亚州立大学材料科学和工程教授JoshuaRobinson领导。参与这项研究的其他教师包括亨利-W-克纳尔早期职业教授和物理学副教授张翠珠,以及宾夕法尼亚州立大学材料科学和工程学院助理教授DanielleReifsnyderHickey。...PC版:https://www.cnbeta.com.tw/articles/soft/1348689.htm手机版:https://m.cnbeta.com.tw/view/1348689.htm

封面图片

不是科幻小说:一种无需接触即可移动物体的新方法

不是科幻小说:一种无需接触即可移动物体的新方法虽然之前已经证明了光和声波可以操纵物体,但这些物体总是比声音或光的波长小,或者分别在毫米到纳米的范围内。明尼苏达大学的团队利用超材料物理学的原理开发了一种可以移动更大物体的方法。超材料是经过人工设计的材料,可以与光和声音等波互动。通过在一个物体的表面放置超材料图案,研究人员能够使用声音将其引向某个方向,而无需实际接触它。"我们已经知道有一段时间了,波、光和声音可以操纵物体。"该研究的高级作者、明尼苏达大学机械工程系本杰明-梅休助理教授OgnjenIlic说:"我们的研究与众不同的是,如果我们把物体的表面变成超材料表面或'超表面',我们可以操纵和捕获更大的物体。当我们在物体表面放置这些微小的图案时,我们基本上可以将声音反射到我们想要的任何方向。而这样做,我们可以控制施加在物体上的声学力量。"使用这种技术,研究人员不仅可以将一个物体向前移动,还可以将其拉向一个源头,这与《星际迷航》等科幻小说中的牵引光束技术并无太大区别。他们的方法可能被证明对制造或机器人等领域的物体移动非常有用。论文第一作者、明尼苏达大学机械工程系研究生马修-斯坦恩说:"非接触式操纵是光学和电磁学的一个热门研究领域,但这项研究提出了另一种非接触式驱动方法,它具有其他方法可能不具备的优势。另外,在这项研究实现的应用之外,扩大我们的物理学知识只是一般来说非常令人兴奋的事情!"虽然这项研究更多的是对概念的演示,但研究人员的目标是在未来测试出更高频率的波和不同的材料和物体尺寸。Ilic说:"在科学和工程的许多领域,特别是机器人,需要移动东西,将信号转变成某种可控的运动。这通常是通过物理系绳或必须携带一些能量来源来完成任务。我认为我们在这里描绘了一个新的方向,并表明在没有物理接触的情况下,我们可以移动物体,而且可以通过对该物体表面上的东西进行编程来控制该运动。这为我们提供了一种新的机制,可以无接触地驱动事物。"...PC版:https://www.cnbeta.com.tw/articles/soft/1338309.htm手机版:https://m.cnbeta.com.tw/view/1338309.htm

封面图片

科学家展示了通过对多铁性材料施加应变来控制磁化方向的能力

科学家展示了通过对多铁性材料施加应变来控制磁化方向的能力用低电场引导磁化对于推动有效的自旋电子器件至关重要。在自旋电子学中,电子自旋或磁矩的特性被用于信息存储。通过应变改变轨道磁矩,就有可能操纵电子自旋,从而增强磁电效应,实现卓越性能。东京大学的JunOkabayashi等日本研究人员揭示了界面多铁氧体中的应变诱导轨道控制机制。在多铁氧体材料中,磁性可以通过电场来控制--这有可能带来高效的自旋电子器件。Okabayashi及其同事研究的界面多铁氧体由铁磁材料和压电材料之间的结点组成。材料的磁化方向可以通过施加电压来控制。界面多铁性结构和磁化方向控制。资料来源:TakamasaUsami研究小组展示了材料中大磁电效应的微观起源。压电材料产生的应变可以改变铁磁材料的轨道磁矩。他们利用可逆应变揭示了界面多铁磁性材料中特定元素的轨道控制,并为设计具有大磁电效应的材料提供了指导。这些发现将有助于开发耗电更少的新型信息书写技术。这项研究得到了日本学术振兴会、日本科学技术振兴机构、日本自旋电子研究网络和矢崎科学技术纪念基金会的资助。编译来源:ScitechDaily...PC版:https://www.cnbeta.com.tw/articles/soft/1419501.htm手机版:https://m.cnbeta.com.tw/view/1419501.htm

封面图片

重塑磁性:麻省理工学院拓扑材料学研究迎来开创性进展

重塑磁性:麻省理工学院拓扑材料学研究迎来开创性进展最先进的X射线和中子光谱分析发现,拓扑材料晶体中拓扑奇异性的存在使磁性稳定在经典转变温度之上。图片来源:EllaMaruStudio由麻省理工学院核科学与工程系副教授李明达领导,麻省理工学院量子测量组研究生助理研究员、哈佛大学应用物理学博士生内森-德鲁克(NathanDrucker)与麻省理工学院量子测量组研究生ThanhNguyen和PhumSiriviboon合著的一项新研究正在挑战这一传统观点。这项公开发表在《自然-通讯》(NatureCommunications)杂志上的研究首次证明,拓扑结构可以稳定磁有序,甚至远高于磁转变温度--磁性通常会在这一点上瓦解。德鲁克是这篇论文的第一作者,他说:"我喜欢用这样一个比喻来描述为什么这能起作用,那就是想象一条河里满是圆木,圆木代表材料中的磁矩。要使磁性起作用,你需要所有这些圆木都指向同一个方向,或者它们之间有一定的规律。但在高温下,磁矩都朝向不同的方向,就像河流中的原木一样,磁性就会瓦解。"他继续说:"但这项研究的重要意义在于,实际上是水在发生变化。我们所展示的是如果改变水本身的特性,而不是原木的特性,就可以改变原木之间的相互作用,从而产生磁性。"拓扑结构在增强磁性中的作用Li说,从本质上讲,这篇论文揭示了在CeAlGe(一种由铈、铝和锗组成的奇异半金属)中发现的被称为Weyl节点的拓扑结构如何显著提高磁性器件的工作温度,从而为广泛的应用打开大门。虽然拓扑材料已被用于制造传感器、陀螺仪等,但它们还被广泛应用于微电子、热电和催化设备等领域。Nguyen说,这项研究展示了在更高温度下保持磁性的方法,为更多的可能性打开了大门。在这种材料和其他拓扑材料中,人们已经展示了许多机会。这表明了一种可以显著提高这些材料工作温度的通用方法。加州理工学院物理、数学和天文学部物理学助理教授LindaYe补充说,这一"相当令人惊讶和反直觉"的结果将对拓扑材料的未来工作产生重大影响。研究工作表明,电子拓扑节点不仅在稳定静态磁序方面发挥作用,而且更广泛地说,它们可以在磁波动的产生方面发挥作用。由此得出的一个自然结论是,拓扑韦尔态对材料的影响可能远远超出人们之前的认识。普林斯顿大学物理学教授安德烈-伯内维格对此表示赞同,称这一发现"令人费解,也非常了不起。众所周知,Weyls节点受到拓扑学保护,但这种保护对相的热力学性质的影响并不十分清楚,麻省理工学院研究小组的论文表明,在有序温度之上的短程有序受该体系中出现的韦尔费米子之间的嵌套波矢量支配......这可能表明,韦尔节点的保护在某种程度上影响了磁波动!"揭开磁性之谜虽然这些令人惊讶的结果挑战了人们长期以来对磁性和拓扑学的理解,这是精心实验的结果,也是研究小组愿意探索那些可能被忽视的领域的结果。"我们的假设是,在磁转变温度之上没有新的发现,"Li解释说。"我们使用了五种不同的实验方法,以一致的方式创造了这个全面的故事,并将这个谜团拼凑在一起。"为了证明磁性在更高温度下的存在,研究人员首先在熔炉中将铈、铝和锗结合在一起,形成毫米大小的材料晶体。然后对这些样品进行了一系列测试,包括热导率和电导率测试,每项测试都揭示了这种材料不寻常磁性行为的线索。德鲁克说:"不过,我们还采用了一些更奇特的方法来测试这种材料。我们用一束与材料中的铈的能级相同的X射线照射这种材料,然后测量光束的散射情况。这些测试必须在能源部国家实验室的一个大型设备中进行。最终,我们不得不在三个不同的国家实验室做类似的实验,以证明那里存在这种隐藏的秩序,我们就是这样找到了最有力的证据。"Nguyen说,"部分挑战在于,在拓扑材料上进行此类实验通常非常困难,而且通常只能提供间接证据。在这种情况下所做的就是使用不同的探针进行多项实验,把它们放在一起,就能给我们一个非常全面的故事。在这种情况下,有五六条不同的线索,还有一大串仪器和测量结果都在这项研究中发挥了作用"。影响和未来方向展望未来,研究小组计划探索拓扑结构与磁性之间的关系能否在其他材料中得到证明。他们相信这一原理具有普遍性。因此,这可能存在于许多其他材料中,它拓展了我们对拓扑学作用的理解。我们知道它可以在增加导电性方面发挥作用,现在我们已经证明它也可以在磁性方面发挥作用。未来的其他工作还将涉及拓扑材料的可能应用,包括它们在热电设备中的应用,这种设备可以将热量转化为电能。虽然这类设备已经用于为手表等小型设备供电,但其效率还不足以为手机或其他大型设备供电。"我们已经研究了许多优秀的热电材料,它们都是拓扑材料,"Li说。"如果它们能用磁性显示出这种性能......它们将释放出非常好的热电特性。例如,这将有助于它们在更高的温度下运行。现在,许多太阳能电池只能在很低的温度下运行,以收集废热。这样做的一个非常自然的结果就是它们能够在更高的温度下工作"。这项研究最终表明,虽然拓扑半金属材料已经研究了很多年,但人们对它们的特性了解相对较少。德鲁克说:"我认为,我们的工作凸显了这样一个事实:当你观察这些不同的尺度,并使用不同的实验来研究其中一些材料时,事实上,一些非常重要的热电、电学和磁学特性就会开始显现出来。因此,我认为这不仅为我们如何将这些东西用于不同的应用提供了提示,也为我们如何更好地理解这些热波动效应的其他基础研究提供了跟进。"...PC版:https://www.cnbeta.com.tw/articles/soft/1390435.htm手机版:https://m.cnbeta.com.tw/view/1390435.htm

🔍 发送关键词来寻找群组、频道或视频。

启动SOSO机器人