科学家展示了通过对多铁性材料施加应变来控制磁化方向的能力

科学家展示了通过对多铁性材料施加应变来控制磁化方向的能力用低电场引导磁化对于推动有效的自旋电子器件至关重要。在自旋电子学中,电子自旋或磁矩的特性被用于信息存储。通过应变改变轨道磁矩,就有可能操纵电子自旋,从而增强磁电效应,实现卓越性能。东京大学的JunOkabayashi等日本研究人员揭示了界面多铁氧体中的应变诱导轨道控制机制。在多铁氧体材料中,磁性可以通过电场来控制--这有可能带来高效的自旋电子器件。Okabayashi及其同事研究的界面多铁氧体由铁磁材料和压电材料之间的结点组成。材料的磁化方向可以通过施加电压来控制。界面多铁性结构和磁化方向控制。资料来源:TakamasaUsami研究小组展示了材料中大磁电效应的微观起源。压电材料产生的应变可以改变铁磁材料的轨道磁矩。他们利用可逆应变揭示了界面多铁磁性材料中特定元素的轨道控制,并为设计具有大磁电效应的材料提供了指导。这些发现将有助于开发耗电更少的新型信息书写技术。这项研究得到了日本学术振兴会、日本科学技术振兴机构、日本自旋电子研究网络和矢崎科学技术纪念基金会的资助。编译来源:ScitechDaily...PC版:https://www.cnbeta.com.tw/articles/soft/1419501.htm手机版:https://m.cnbeta.com.tw/view/1419501.htm

相关推荐

封面图片

科学家通过外尔反铁磁体研究揭开了“霍尔效应”的物理学之谜

科学家通过外尔反铁磁体研究揭开了“霍尔效应”的物理学之谜在2022年8月18日发表于《自然·物理学》期刊上的一篇文章中,一支跨国研究团队详细介绍了在存储设备中使用“反铁磁”材料的最新进展。据悉,antiferromagnets特指具有“由电子自旋引起内部磁场、但又没有外部(远距)磁场”的一种特殊材料。得益于此,数据存储单元(比特位)有望在材料内部实现更致密的封装。研究配图1-Mn₃Sn反手性磁结构/磁化压电控制一方面,传统磁存储器中的铁磁体,需要避免相邻数据位(bit)的互相干扰,因而难以做到更加致密的封装。另一方面,若利用由EdwinHall在1879年发现的霍尔效应(HallEffect),则能够在反铁磁材料上施加垂直于电流方向的电压。研究配图2-拓补反磁体Mn₃Sn在面内单轴压缩下的压磁效应当反磁体中的所有自旋都翻转时,霍尔电压的符号也会随时改变——这样就可分别代表二进制比特位的“0”或“1”数值。尴尬的是,尽管科学家们早就知晓了铁磁材料中的霍尔效应,但直到最近,大家才认可了它在反铁磁体中的效应、且知之甚少。研究配图3-Weyl反铁磁体的AHE/在面内单轴应变下的符号反转好消息是,来自日本东京大学、美国康奈尔大学、约翰·霍普金斯大学、以及英国伯明翰大学的联合研究团队,刚刚对Weyl反铁磁体(Mn₃Sn)中的“霍尔效应”的最新解释。据悉,该材料具有特别强的自发霍尔效应。而近日发表于《自然·物理学》期刊上的新论文,不仅对铁磁体/反铁磁体研究领域产生了深远的影响、还引发了我们对下一代存储设备的新思考。研究配图4-ferrohalic、parahallic和diahallic状态下/霍尔矢量K的不同应变控制作为一种“外尔半金属”,Mn₃Sn并不是完美的反铁磁体,且它具有微弱的外部磁场。在此基础上,研究人员试图搞清霍尔效应是否由这种弱磁场引起。实验期间,科学家们使用了由研究合著者、来自伯明翰大学CliffordHicks博士设计的装置——该装置可用于向被测量材料提供可变的应力。扩展数据图-1:室温下反铁磁体中异常霍尔效应的压电转换通过将这种应力施加到外尔反铁磁体上,剩余的外部磁场就会有所增加。若霍尔效应由磁场驱动,那材料上的电压就会产生相应的影响。然而事实表明,电压并未发生实质性的变化,证明了磁场并未在其中扮演重要的角色。相反,研究得出了另一个结论,即材料内旋转电子的排列、才是产生霍尔效应的主因。CliffordHicks表示:“实验证明了霍尔效应是由传导电子与其自旋电子的量子相互作用引发,这一发现对于我们深入了解和改进磁存储技术都至关重要”。有关这项研究的详情,还请移步至《NaturePhysics》查看,原标题为《PiezomagneticswitchingoftheanomalousHalleffectinanantiferromagnetatroomtemperature》。PC版:https://www.cnbeta.com/articles/soft/1311965.htm手机版:https://m.cnbeta.com/view/1311965.htm

封面图片

科学家发现一种前所未见的新型磁性Altermagnetism

科学家发现一种前所未见的新型磁性Altermagnetism一名PSI科学家与用于确认发现地磁的仪器说到磁铁,人们通常会想到容易粘在冰箱上的东西,科学上称之为铁磁体。但在大约一个世纪前,人类发现了另一种磁性材料家族,它们不具有这种特性,并将其称为反铁磁体。材料行为的差异可归结为这些材料中磁矩(也称为电子自旋)的自发排列。电子自旋与铁磁体的方向相同,因此在靠近金属表面时会产生磁性。在反铁磁体中,电子自旋方向相反,产生的磁性被抵消。这导致它们无法粘在冰箱上。在变磁性中,电子自旋是交替的,不会产生净宏观磁性。但是,电子能带结构具有很强的自旋极化,可以在材料的能带中翻转。这就是这种材料被称为"变磁体"的原因。2019年,中国科学院物理研究所研究员托马斯-荣格沃思(TomasJungwirth)发现了一类磁性材料,其电子自旋与铁磁体或反铁磁体的电子自旋不一致。2022年,Jungwirth与美因茨大学的研究人员一起,提出了存在一类新磁体的理论。在研究过程中,研究小组发现了200多种材料,从绝缘体到半导体,甚至超导体,都可能是改变磁体的候选材料。为了证实这些材料中存在独特的自旋对称性,研究人员与瑞士的SLS公司合作。他们使用自旋和角度分辨光发射光谱来观察材料中的电子结构。瑞士SLS的表面/界面光谱(SIS)光束线仪器他们对碲化锰进行了测试,这种双元素材料通常被归类为反铁磁体。然而,这种材料显示出电子带分裂成两种不同的状态,很像铁磁体。这证实了这种材料确实是一种改变磁体。第三种磁性材料的发现有助于利用自旋电子学提供下一代磁性存储器。在传统电子学中,人们利用电子的电荷。然而,在自旋电子学中,电子的自旋状态也被用来存储信息。新兴的计算领域一直在使用铁磁体来开发此类设备。然而,这些材料所显示的宏观磁性令人担忧,因为它可能会促进比特之间的串扰。由于改磁体不显示净磁性,但具有很强的自旋效应,因此可以作为自旋电子学的理想候选材料。"超电磁实际上并不是什么非常复杂的东西。它是一种完全基本的东西,几十年来就在我们眼前,而我们却没有注意到它,"荣格沃思在一份新闻稿中说。"它存在于人们抽屉里的许多晶体中。从这个意义上说,现在我们将它公之于众,世界各地的许多人将能够研究它,从而产生广泛的影响。研究成果发表在今天的《自然》杂志上。...PC版:https://www.cnbeta.com.tw/articles/soft/1418703.htm手机版:https://m.cnbeta.com.tw/view/1418703.htm

封面图片

中国科学家团队最新研究发现铁电材料中的 “奇点”

中国科学家团队最新研究发现铁电材料中的“奇点”记者5月18日从中国科学院获悉,中国科学院物理研究所马秀良研究员、中国科学院金属研究所王宇佳研究员、广东松山湖材料实验室冯燕朋副研究员等组成的研究团队,最新在铁电材料中研究发现极化“布洛赫点”(Blochpoint),它是矢量场中的“奇点”,其周围的矢量朝向空间中的各个方向。研究团队表示,该项研究工作进一步完善了通过失配应变调控铁电材料畴结构的重要性和有效性,揭示极化体系中的电偶极子在一定条件下可以形成类似特殊凝聚结构的准粒子,丰富了极化拓扑畴结构家族,对探索基于铁电材料的高密度非易失性信息存储器件具有重要意义。(中新网)

封面图片

哈佛大学科学家利用声音来测试设备及控制量子比特

哈佛大学科学家利用声音来测试设备及控制量子比特利用声波控制原子空位可以增强通信技术,并为量子计算提供新的控制机制。声共振无处不在。事实上,很有可能你现在手里就拿着一个。如今,大多数智能手机都将体声谐振器用作射频滤波器,以滤除可能降低信号质量的噪音。这些滤波器也用于大多数Wi-Fi和GPS系统。声学谐振器比电子谐振器更稳定,但也会随着时间的推移而退化。目前还没有一种简便的方法来主动监测和分析这些广泛使用的设备的材料质量退化情况。现在,哈佛大学约翰-保尔森工程与应用科学学院(SEAS)的研究人员与普渡大学OxideMEMS实验室的研究人员合作开发了一种系统,利用碳化硅中的原子空位来测量声共振的稳定性和质量。更重要的是,这些空位还可用于声控量子信息处理,为操纵嵌入这种常用材料中的量子态提供了一种新方法。"碳化硅既是量子报告器的宿主,也是声共振探针的宿主,它是一种现成的商用半导体,可以在室温下使用,"该论文的资深作者、应用物理系和电子工程系塔尔-科因教授、文理学院李彦宏和马蔚华教授伊夫林-胡(EvelynHu)说。"作为一种声共振探针,碳化硅中的这种技术可用于监测加速计、陀螺仪和时钟在其寿命期间的性能,而在量子方案中,则有可能用于混合量子存储器和量子网络"。这项研究发表在《自然-电子学》上。碳化硅是微机电系统(MEMS)的常用材料,其中包括体声谐振器。普渡大学埃尔莫尔家族电气与计算机工程学院教授、论文合著者苏尼尔-巴维(SunilBhave)说:"众所周知,晶圆级可制造碳化硅谐振器尤其具有同类最佳的品质因数性能。但是,晶体生长缺陷(如位错和晶界)以及谐振器制造缺陷(如粗糙度、系应力和微尺度凹坑)会在MEMS谐振器内部造成应力集中区域。"如今,要想在不破坏声学谐振器的情况下看到谐振器内部的情况,唯一的办法就是使用超强且非常昂贵的X射线,例如阿贡国家实验室的宽光谱X射线束。夹在碳化硅声共振器(蓝色)顶部两个电极(黄色)之间的压电层(绿色)。电极和压电层产生的声波会对晶格产生机械应变,从而使缺陷(红色)的自旋发生翻转。利用聚焦在谐振器背面的激光读出自旋。资料来源:HuGroup/HarvardSEAS"这类昂贵且难以接近的机器无法在铸造厂或实际制造或部署这些设备的地方进行测量或表征,"SEAS研究生、论文共同第一作者乔纳森-迪茨(JonathanDietz)说。"我们的动机是尝试开发一种方法,让我们能够监测体声谐振器内部的声能,这样你就可以将这些结果反馈到设计和制造过程中。"碳化硅通常存在天然缺陷,在这种缺陷中,一个原子从晶格中被移除,从而产生一种空间局部电子状态,其自旋可以通过材料应变与声波相互作用,例如声共振器产生的应变。当声波穿过材料时,会对晶格产生机械应变,从而使缺陷的自旋发生翻转。自旋状态的变化可以通过用激光照射材料来观察,看有多少缺陷在受到扰动后"打开"或"关闭"。"光有多暗或多亮,表明缺陷所在局部环境中的声能有多强,"SEAS的研究生、论文合著者亚伦-戴(AaronDay)说。"由于这些缺陷只有单个原子大小,它们提供的信息非常局部,因此,你实际上可以用这种非破坏性的方式绘制出器件内部的声波图。"该地图可以指出系统可能在哪里以及如何退化或无法以最佳状态运行。碳化硅中的这些缺陷也可以成为量子系统中的量子比特。如今,许多量子技术都建立在自旋相干性的基础上:自旋在特定状态下保持的时间。这种相干性通常由磁场控制。但Hu和她的团队利用他们的技术证明,他们可以通过声波对材料进行机械变形来控制自旋,从而获得与其他使用交变磁场的方法类似的控制质量。Hu说:"利用材料的天然机械特性--应变--扩大了我们的材料控制范围。当我们使材料变形时,我们发现我们还可以控制自旋的相干性,而且我们只需通过材料发射声波就能获得这些信息。这为我们提供了一个重要的材料固有特性的新工具,我们可以利用它来控制蕴藏在材料中的量子态。"...PC版:https://www.cnbeta.com.tw/articles/soft/1392729.htm手机版:https://m.cnbeta.com.tw/view/1392729.htm

封面图片

量子突破:科学家开发出操纵奇异材料的新方法

量子突破:科学家开发出操纵奇异材料的新方法上图展示了一种控制材料中量子态的新方法。电场诱导铁电基底发生极化转换,从而产生不同的磁性和拓扑状态。图片来源:MinaYoon、FernandoReboredo、JacquelynDeMink/ORNL、美国能源部拓扑材料发现于20世纪80年代,是一种新的材料阶段,其发现者于2016年获得诺贝尔奖。仅利用电场,ORNL的研究人员就能将普通绝缘体转化为磁性拓扑绝缘体。这种奇特的材料允许电流流过其表面和边缘,而没有能量耗散。电场会引起物质状态的改变。领导这项研究的ORNL的MinaYoon说:"这项研究可以带来许多实际应用,如下一代电子学、自旋电子学和量子计算。"这些物质可能会带来高速、低功耗的电子产品,与目前的硅基电子产品相比,它们能耗更低、运行更快。ORNL的科学家们在《二维材料》(2DMaterials)上发表了他们的研究成果。...PC版:https://www.cnbeta.com.tw/articles/soft/1383317.htm手机版:https://m.cnbeta.com.tw/view/1383317.htm

封面图片

科学家在五层石墨烯中发现奇异的新电子态

科学家在五层石墨烯中发现奇异的新电子态五层石墨烯堆栈中的电子呈现出奇特的多铁性新状态的艺术家印象图石墨烯本质上只是一块超薄的普通石墨薄片--事实上,它薄到只有一个原子厚。但是,尽管石墨烯的起点如此卑微,它却具有超强、超导、柔韧等特性,并有望彻底改变从电子产品、服装到航空航天工程等一切领域。当你开始堆叠石墨烯薄片,甚至将它们扭曲到特定角度时,其他非凡的能力就会显现出来,比如磁性或超强的透水性。在新的研究中,麻省理工学院的研究小组又发现了另一种材料--"多铁性行为",这在材料界是非常罕见的。铁性材料是指其粒子具有协调行为的材料--例如,磁铁的所有电子即使在没有外部磁场的情况下也会将自旋指向同一方向。多铁性材料是指显示出不止一种协调行为的材料,例如,磁性指向一个方向,而电荷指向另一个方向。研究人员计算出,在非常特殊的情况下,石墨烯应该成为多铁性材料。从理论上讲,只有当五层石墨烯叠放在一起,每层略有偏移,使三维整体形成菱形时,才会出现多铁性。在五层石墨烯中,电子恰好处于晶格环境中,它们的移动速度非常缓慢,因此可以有效地与其他电子相互作用。这时电子相关效应开始占主导地位,它们可以开始协调成某些优先的铁氧体秩序。接下来,研究小组开始在实践中证实这一理论,他们从石墨块上刮下石墨烯薄片,并用强力显微镜进行检查,以找到一些自然具有理想菱形形状的石墨烯。然后,他们将发现的几种石墨烯分离出来,在略高于绝对零度的温度下进行研究,在这种温度下,其他效应会减弱,因此只有他们正在寻找的石墨烯才能发光。果然,研究小组发现,这些特殊薄片中的电子对一个方向的电场和另一个方向的磁场反应一致,证实了多铁行为。但即使是这些单独的行为也是不寻常的--磁性产生于电子轨道运动的协调,而不是它们的自旋。电子行为产生于电子优先进入一个"谷"(或最低能量状态),而不是平均进入两个谷。因此,研究小组将这种奇特的电子状态称为"铁谷性"。"我们知道在这种结构中会发生一些有趣的事情,但我们不知道具体是什么,直到我们进行了测试,"该研究的共同第一作者卢正光说。"这是我们第一次看到铁谷电子学,也是我们第一次看到铁谷电子学与非常规铁磁体共存"。研究人员说,这种奇特的行为最终可以被利用来有效地将芯片的数据存储容量提高一倍。这项研究发表在《自然》杂志上。...PC版:https://www.cnbeta.com.tw/articles/soft/1390923.htm手机版:https://m.cnbeta.com.tw/view/1390923.htm

🔍 发送关键词来寻找群组、频道或视频。

启动SOSO机器人