科学家找到信天翁利用次声波进行长途旅行的首个证据

科学家找到信天翁利用次声波进行长途旅行的首个证据在发表于《美国国家科学院院刊》(PNAS)上的一篇论文中,该大学环境科学学院的研究人员表明,信天翁在进行长途觅食飞行时,会朝向微巴伦次声波"响亮"的区域。论文的题目是"信天翁的运动表明其对海上次声线索的敏感性"。次声波是一种人类听不到的低频声音,但在海洋环境中无处不在。微波是一种与海浪碰撞有关的次声波。这种波浪区域也与强风有关,信天翁依靠强风帮助自己高效飞行。研究人员使用GPS跟踪器确定了89只在南大洋克罗泽群岛繁殖的游荡信天翁在出海觅食过程中的飞行路径,这些信天翁的出海觅食时间可长达一个月。然后,他们将这些飞行路径与研究小组开发的代表微巴伦次声分布的模型声学地图进行了比较。结果表明,游荡信天翁在定向飞行时会朝微巴隆次声波"响亮"的区域飞去,这表明信天翁可以感知并响应远距离传播的微巴隆次声波。与LucíaMartínLópez博士共同领导这项研究的大学环境科学学院海鸟生态学家NatashaGillies博士说:"动物如何在超过100-1,000千米的大空间范围内导航和寻找资源是生态学的一个基本问题。对于海鸟等海洋动物来说,由于视觉信息的可用性有限,这个问题尤其引人关注,这意味着必须有其他线索参与运动。有人提出,海鸟可以利用次声波来帮助它们在巨大的、毫无特征的海洋环境中飞行觅食。我们的研究结果首次证明了自由活动的动物在运动过程中对次声波的反应能力。"这项研究是"人类前沿科学计划"(HumanFrontierScienceProgram)资助项目的一部分,它汇集了一个国际合作团队(南非斯泰兰博斯大学、美国佛罗里达大学、荷兰皇家气象研究所)。这是对他们之前提出的次声波可能是海鸟导航的重要提示的首次实证检验。领导这项研究的萨曼莎-帕特里克(SamanthaPatrick)博士说:"只有通过这样的跨学科科学,将不同领域的科学家聚集在一起,我们才能获得如此令人兴奋的新见解。"...PC版:https://www.cnbeta.com.tw/articles/soft/1389573.htm手机版:https://m.cnbeta.com.tw/view/1389573.htm

相关推荐

封面图片

科学家开发水凝胶绷带 利用超声波更好地粘附在皮肤上

科学家开发水凝胶绷带利用超声波更好地粘附在皮肤上让绷带粘在皮肤上有时会很困难,尤其是在皮肤潮湿的情况下。然而,一种实验性的新伤口敷料并不存在这个问题,它利用超声波诱导的微气泡与皮肤更好地结合。由加拿大麦吉尔大学领导的团队开发的这种敷料本身是以透明水凝胶薄片的形式出现的--它是由聚(N-异丙基丙烯酰胺)聚合物以及海藻衍生的海藻酸凝胶制成。该水凝胶与含有壳聚糖或明胶纳米颗粒或纤维素纳米晶体的液体底层涂料相结合。不管是什么组合,一旦底层涂料和水凝胶被应用到伤口上,一个小型超声波传感器就会与它们接触。超声波穿过水凝胶,在底层涂料中诱发空化,产生许多微气泡,将底层涂料分子向下推入皮肤。因此,该敷料比传统的粘性绷带更好地粘在皮肤上--超声波的强度越大,敷料的粘性越好。一旦伤口愈合,粘合过程可以被逆转,以去除水凝胶。除了用于伤口治疗外,据信该技术还可用于通过皮肤传递药物......而且可能性还不止于此。首席科学家、麦吉尔大学的李建宇(音译)教授说:“通过融合力学、材料和生物医学工程,我们设想了我们的生物粘附技术在可穿戴设备、伤口管理和再生医学方面的广泛影响。”有关这项研究的论文最近发表在《科学》杂志上。来自不列颠哥伦比亚大学和瑞士苏黎世联邦理工学院的科学家也参与了这项研究。PC版:https://www.cnbeta.com/articles/soft/1303987.htm手机版:https://m.cnbeta.com/view/1303987.htm

封面图片

科学家利用超声波引导微泡机器人穿过复杂的脑血管

科学家利用超声波引导微泡机器人穿过复杂的脑血管我们的大脑中有超过404英里(650公里)长的血管。纳米技术的进步使得微型机器人得以发展,它们可以通过这些微小复杂的路径进入以前无法进入的区域,提供精确的药物输送,并进行微创手术。考虑到血管网络的复杂性和遇到的血流压力,需要一种引导微型机器人的方法。利用磁场引导微机器人穿过大脑血管可实现精确操作,但由于微机器人必须具有磁性,因此限制了它们的生物降解性。现在,苏黎世联邦理工学院、苏黎世大学和苏黎世大学医院的研究人员合作开发出了微载体--涂有脂质的充满气体的微气泡--可以利用超声波在小鼠大脑狭窄而复杂的血管中导航。该研究的通讯作者之一丹尼尔-艾哈迈德(DanielAhmed)说:"超声波除了在医学领域广泛应用外,还具有安全和深入人体的特点。"这些小而光滑、充满气体的微气泡直径在1.1至1.4微米之间,由目前用于超声成像的一种荧光造影剂制成。随着时间的推移,它们会在体内溶解,其脂质外壳由与生物细胞膜相同的物质制成。声学微型机器人导航与实时光学成像相结合DelCampoFonseca等人的研究发现,微型机器人可以在体内长期溶解,其脂质外壳由与生物细胞膜相同的物质制成。研究人员将微气泡注入小鼠体内,使其在动物血液中循环。显微镜可对机器人进行实时成像。研究人员在小鼠头部外侧安装了多达四个超声波传感器,发现微机器人对声波的反应是自我组装成群,并沿着脑血管导航。这些机器人通过调整每个传感器的输出来进行引导,速度最高可达1.5微米/秒,并成功地逆向移动,血流速度最高可达10毫米/秒。研究结果表明,声学微型机械臂可在体内生理条件下工作。研究人员分析了超声驱动后的脑组织,发现微机器人既没有破坏血管内壁,也没有造成神经细胞死亡。用一种已在使用的物质制造微气泡有其优势。艾哈迈德说:"由于这些气泡或囊泡已获准用于人体,因此与目前正在开发的其他类型的微载体相比,我们的技术很可能更快地获得批准并用于人体治疗。"现在,他们已经证明了他们的微型机器人可以在小鼠脑血管中导航,研究人员的下一步是在微泡外壳外面附着药物分子。如果成功,这种由超声波激活的微载体就有可能用于治疗癌症、中风和心理疾病。该研究发表在《自然-通讯》杂志上。...PC版:https://www.cnbeta.com.tw/articles/soft/1402929.htm手机版:https://m.cnbeta.com.tw/view/1402929.htm

封面图片

科学家发现阿尔茨海默病人传人的首个证据

科学家发现阿尔茨海默病人传人的首个证据从20世纪50年代末开始,大约有25年的时间,人类生长激素被零星地用于治疗有某些身体发育问题的儿童。这种激素被称为"c-hGH"(尸体提取的人体生长激素),是从死者的脑垂体中提取的,然后注射到身材异常矮小的儿童体内。多年来,在接受生长激素治疗的儿童中,出乎意料地有很高比例的人患上了一种致命的神经退行性疾病--克雅氏病。这种疾病是由有毒的错误折叠蛋白质(称为朊病毒)引起的。到1985年,有确凿证据表明生长激素与克雅氏病有关。研究人员发现,一些生长激素样本中含有有毒的朊病毒,这就在健康的大脑中播下了神经退行性疾病的种子。源于人类的生长激素很快被更安全的合成激素所取代。最近,一组研究人员在研究因克雅氏病死亡的生长激素患者的脑组织样本时,发现了阿尔茨海默病的奇怪迹象。这些已故患者体内的淀粉样蛋白沉积异常高,而这正是阿尔茨海默病的一个明显标志。于是,一个问题出现了:阿尔茨海默氏症会像其他朊病毒疾病一样在人与人之间传播吗?由于这些患者死于克雅氏病的时间太短,因此无法判断他们是否会发展为阿尔茨海默氏症。不过,随后的一项研究确实发现,一些c-hGH样品中含有淀粉样蛋白的累积,动物试验显示,注射了受污染生长激素的小鼠出现了阿尔茨海默病的病理迹象。因此,在这一点上,阿尔茨海默病在人与人之间传播的假设是可信的,但研究人员仍然需要某种确凿的证据。为此,研究小组调查了最近转诊到伦敦国家朊病毒诊所的八名神经系统疾病患者。这八名患者在童年时期都接受过c-hGH治疗,现在的年龄在38岁到55岁之间。其中五名患者被诊断为早发性痴呆症,但没有克雅氏病的病理迹象。所有这五名患者都符合阿尔茨海默氏症的诊断标准,但重要的是,他们没有表现出早发痴呆症的遗传倾向。研究人员在最新发表的研究报告中写道:"在此,我们描述了在AD(阿尔茨海默病)表型谱内出现痴呆和生物标志物变化的受者,这表明AD与CJD(克雅氏病)一样,有环境获得性(先天性)形式以及晚发散发性和早发遗传性形式,"研究人员写道。"虽然先天性AD可能很少见,也没有迹象表明Aβ[淀粉样蛋白-β]会在日常生活活动中在人与人之间传播,但对它的认识强调了有必要重新审视防止通过其他医疗和外科手术意外传播的措施"。曼彻斯特大学的安德鲁-多伊格(AndrewDoig)说,新的研究结果是全面而仔细的,但他提醒人们不要从基本上只是八个非常罕见的病例中进行更广泛的推断。多依格说:"虽然这里报告的新型阿尔茨海默氏症引起了极大的科学兴趣,因为它揭示了一种新的疾病传播方式,但我们没有理由对此感到恐惧,因为这种疾病的致病方式早在40多年前就被制止了。以这种方式在人脑之间传播疾病的情况再也不会发生了"。英国阿尔茨海默氏症研究中心的苏珊-科尔哈斯(SusanKohlhaas)对此表示赞同,她认为这些发现确实证明了阿尔茨海默氏症在人与人之间传播的异常罕见的实例,但同时也指出,如今不太可能出现这类病例。相反,科尔哈斯说,这一发现有望为研究人员提供有关这种疾病如何发展的新见解,从而帮助他们找到新的治疗方法。科尔哈斯说:"没有证据表明,淀粉样蛋白可以通过任何其他途径,如日常活动或常规医疗程序传播。但这项研究揭示了更多关于淀粉样蛋白碎片如何在大脑内扩散的信息,为阿尔茨海默氏症如何发展提供了进一步的线索,也为未来的治疗提供了潜在的新目标。"这项新研究发表在《自然医学》杂志上。...PC版:https://www.cnbeta.com.tw/articles/soft/1414977.htm手机版:https://m.cnbeta.com.tw/view/1414977.htm

封面图片

无声的尖叫:科学家认为部分青蛙可能有能力通过超声波进行跨物种交流

无声的尖叫:科学家认为部分青蛙可能有能力通过超声波进行跨物种交流落叶蛙(Haddadusbinotatus)发出的求救信号的频率人类听不到,但捕食者却能听到。图片来源:HenriqueNogueira"两栖动物的一些潜在天敌,如蝙蝠、啮齿动物和小型灵长类动物,能够发出并听到这个频率的声音,而人类却不能。我们的一个假设是,这种求救信号是针对其中一些天敌发出的,但也有可能是,这种宽频带具有普遍性,因为它可以吓唬尽可能多的天敌,"文章第一作者乌比拉塔-费雷拉-索萨说。这项研究是UbiratãFerreiraSouza在巴西圣保罗州坎皮纳斯州立大学生物学研究所(IB-UNICAMP)进行的硕士研究的一部分,他获得了巴西国家科学基金会的奖学金。另一种假设是,这种叫声是为了吸引另一种动物来攻击威胁两栖动物的捕食者,在这种情况下,这种捕食者就是巴西大西洋雨林中特有的一种落叶蛙(Haddadusbinotatus)。研究人员记录了两次求救信号。当他们使用特殊软件对声音进行分析时,发现声音的频率范围在7千赫兹到44千赫兹之间。人类无法听到高于20kHz的频率,这属于超声波。在发出求救信号时,这种青蛙会做出一系列典型的防御捕食者的动作。它抬起身体前部,张大嘴巴,头部向后摆动。然后,它部分闭合嘴巴,发出从人类可听到的频段(7kHZ-20kHz)到听不到的超声波频段(20kHz-44kHz)不等的叫声。文章合著者、巴西国家科学院国际生物技术研究所博士生玛丽安娜-雷图西-庞特斯(MarianaRetuciPontes)说:"巴西的两栖动物多样性居世界首位,已描述的物种超过2000种,因此发现其他蛙类也能发出这种频率的声音并不奇怪。"潜在的跨物种超声波通信另一个物种使用这种策略可能是庞特斯自己无意中发现的。2023年1月,蓬特斯在圣保罗州伊波兰加的上里贝拉州立旅游公园(PETAR)游览时,在一块岩石上看到了一种动物,很可能是锯肢蟾(Ischnocnemahenselii),不过她并没有采集这种动物来准确鉴定物种。她抓住青蛙的腿试图拍照,却惊讶地发现青蛙的防御动作和求救信号与H.binotatus非常相似。几英尺外有一条矛头蝮蛇(Bothropsjararaca),显然证实了这种行为是对捕食者的反应的假设。研究演变与未来方向她能够录制视频,但无法分析声轨以确认超声波频段的存在。根据H.binotatus的文献记载,抓住青蛙的腿是研究人员通常用来模拟捕食者攻击青蛙的动作。"这两种两栖动物都生活在落叶层中,体型相似(3厘米到6厘米之间),有类似的天敌,因此I.henselii也有可能利用这种带有超声波的求救信号来抵御天敌,"文章的最后一位作者、IB-UNICAMP教授路易斯-费利佩-托莱多(LuísFelipeToledo)说。他是"从自然史到巴西两栖动物保护"项目的主要研究者,该项目得到了巴西国家科学基金会的支持。托莱多第一次怀疑双尾蝠发出的声音频率过高,人类无法听到,那是在2005年,当时他还是里约克拉罗圣保罗州立大学生物科学研究所(IB-UNESP)的一名博士生。但是,由于当时设备的限制,他无法验证20千赫以上的频率。此外,还有三种亚洲两栖动物的超声波叫声记录,但有关频率用于同一物种个体之间的交流。在哺乳动物中,鲸鱼、蝙蝠、啮齿动物和小型灵长类动物普遍使用超声波。在Souza等人的研究之前,人们还不知道两栖动物使用超声波来抵御捕食者。研究人员现在计划解决这一发现提出的一系列问题,例如哪些捕食者对求救信号敏感,它们对求救信号的反应如何,以及求救信号是为了吓唬它们还是为了吸引它们的天敌。"会不会是为了吸引猫头鹰来攻击即将吃掉青蛙的蛇?"索萨想。编译自:ScitechDaily...PC版:https://www.cnbeta.com.tw/articles/soft/1426656.htm手机版:https://m.cnbeta.com.tw/view/1426656.htm

封面图片

哈佛大学科学家利用声音来测试设备及控制量子比特

哈佛大学科学家利用声音来测试设备及控制量子比特利用声波控制原子空位可以增强通信技术,并为量子计算提供新的控制机制。声共振无处不在。事实上,很有可能你现在手里就拿着一个。如今,大多数智能手机都将体声谐振器用作射频滤波器,以滤除可能降低信号质量的噪音。这些滤波器也用于大多数Wi-Fi和GPS系统。声学谐振器比电子谐振器更稳定,但也会随着时间的推移而退化。目前还没有一种简便的方法来主动监测和分析这些广泛使用的设备的材料质量退化情况。现在,哈佛大学约翰-保尔森工程与应用科学学院(SEAS)的研究人员与普渡大学OxideMEMS实验室的研究人员合作开发了一种系统,利用碳化硅中的原子空位来测量声共振的稳定性和质量。更重要的是,这些空位还可用于声控量子信息处理,为操纵嵌入这种常用材料中的量子态提供了一种新方法。"碳化硅既是量子报告器的宿主,也是声共振探针的宿主,它是一种现成的商用半导体,可以在室温下使用,"该论文的资深作者、应用物理系和电子工程系塔尔-科因教授、文理学院李彦宏和马蔚华教授伊夫林-胡(EvelynHu)说。"作为一种声共振探针,碳化硅中的这种技术可用于监测加速计、陀螺仪和时钟在其寿命期间的性能,而在量子方案中,则有可能用于混合量子存储器和量子网络"。这项研究发表在《自然-电子学》上。碳化硅是微机电系统(MEMS)的常用材料,其中包括体声谐振器。普渡大学埃尔莫尔家族电气与计算机工程学院教授、论文合著者苏尼尔-巴维(SunilBhave)说:"众所周知,晶圆级可制造碳化硅谐振器尤其具有同类最佳的品质因数性能。但是,晶体生长缺陷(如位错和晶界)以及谐振器制造缺陷(如粗糙度、系应力和微尺度凹坑)会在MEMS谐振器内部造成应力集中区域。"如今,要想在不破坏声学谐振器的情况下看到谐振器内部的情况,唯一的办法就是使用超强且非常昂贵的X射线,例如阿贡国家实验室的宽光谱X射线束。夹在碳化硅声共振器(蓝色)顶部两个电极(黄色)之间的压电层(绿色)。电极和压电层产生的声波会对晶格产生机械应变,从而使缺陷(红色)的自旋发生翻转。利用聚焦在谐振器背面的激光读出自旋。资料来源:HuGroup/HarvardSEAS"这类昂贵且难以接近的机器无法在铸造厂或实际制造或部署这些设备的地方进行测量或表征,"SEAS研究生、论文共同第一作者乔纳森-迪茨(JonathanDietz)说。"我们的动机是尝试开发一种方法,让我们能够监测体声谐振器内部的声能,这样你就可以将这些结果反馈到设计和制造过程中。"碳化硅通常存在天然缺陷,在这种缺陷中,一个原子从晶格中被移除,从而产生一种空间局部电子状态,其自旋可以通过材料应变与声波相互作用,例如声共振器产生的应变。当声波穿过材料时,会对晶格产生机械应变,从而使缺陷的自旋发生翻转。自旋状态的变化可以通过用激光照射材料来观察,看有多少缺陷在受到扰动后"打开"或"关闭"。"光有多暗或多亮,表明缺陷所在局部环境中的声能有多强,"SEAS的研究生、论文合著者亚伦-戴(AaronDay)说。"由于这些缺陷只有单个原子大小,它们提供的信息非常局部,因此,你实际上可以用这种非破坏性的方式绘制出器件内部的声波图。"该地图可以指出系统可能在哪里以及如何退化或无法以最佳状态运行。碳化硅中的这些缺陷也可以成为量子系统中的量子比特。如今,许多量子技术都建立在自旋相干性的基础上:自旋在特定状态下保持的时间。这种相干性通常由磁场控制。但Hu和她的团队利用他们的技术证明,他们可以通过声波对材料进行机械变形来控制自旋,从而获得与其他使用交变磁场的方法类似的控制质量。Hu说:"利用材料的天然机械特性--应变--扩大了我们的材料控制范围。当我们使材料变形时,我们发现我们还可以控制自旋的相干性,而且我们只需通过材料发射声波就能获得这些信息。这为我们提供了一个重要的材料固有特性的新工具,我们可以利用它来控制蕴藏在材料中的量子态。"...PC版:https://www.cnbeta.com.tw/articles/soft/1392729.htm手机版:https://m.cnbeta.com.tw/view/1392729.htm

封面图片

科学家利用活蓝藻作为中和水体污染物的材料

科学家利用活蓝藻作为中和水体污染物的材料这种材料由加州大学圣迭戈分校的科学家团队开发,由一种名为海藻酸盐的海藻衍生天然聚合物制成,并与活的细长球藻蓝藻结合在一起。制成的水凝胶被打印成表面积与体积比很高的华夫饼状网格图案。这种结构将大部分微生物置于凝胶表面附近,使它们更容易获得维持生命的养分、气体和阳光,从而提高了细菌的存活率。重要的是,蓝藻经过基因工程改造,可以产生一种叫做漆酶的酶。此前的研究表明,漆酶能够分解双酚A(BPA)、抗生素、药物和染料等水性污染物。在实验室测试中,这种新材料成功地中和了靛蓝胭脂红,而靛蓝胭脂红是一种有毒染料,常用于牛仔裤的生产。当然,谁也不希望基因工程蓝藻在完成任务后仍残留在环境中。有鉴于此,这种微生物还被设计成能产生一种蛋白质,当它们接触到一种名为茶碱的天然化学物质时,这种蛋白质就会破坏它们的单细胞躯体。尽管如此,由于茶碱不是水生环境中的原生物质,因此也没有人希望它进入自己的湖泊或河流。因此,科学家们现在正在研究如何对这种细菌进行工程改造,使其自毁可以由环境中已有的刺激物触发。这项研究的共同负责人乔恩-波科斯基(JonPokorski)教授说:"我们对这项工作可能带来的可能性感到兴奋,我们可以创造出令人兴奋的新材料。当拥有材料科学和生物科学跨学科专业知识的研究人员携手合作时,就能产生这样的研究成果"。有关这项研究的论文最近发表在《自然通讯》(NatureCommunications)杂志上。...PC版:https://www.cnbeta.com.tw/articles/soft/1382107.htm手机版:https://m.cnbeta.com.tw/view/1382107.htm

🔍 发送关键词来寻找群组、频道或视频。

启动SOSO机器人