革命性的"地铁图"揭示了莱姆病的新治疗目标

革命性的"地铁图"揭示了莱姆病的新治疗目标利用这张地图,他们成功鉴定出了两种化合物,这两种化合物可选择性地针对莱姆病感染宿主的唯一途径。他们的研究成果于10月19日发表在《mSystems》杂志上。虽然这两种药物都不是治疗莱姆病的可行方法,因为它们有许多副作用,但成功利用计算"地铁图"预测药物靶点和可能的现有治疗方法表明,有可能开发出只阻断莱姆病而不触及其他有益细菌的微物质。基因组尺度代谢模型(GEM)收集生物系统的所有已知代谢信息,包括基因、酶、代谢物和其他信息。这些模型利用大数据和机器学习来帮助科学家了解分子机制、进行预测,并识别可能是以前未知的、甚至与已知生物过程相反的新过程。目前,治疗莱姆病的方法是使用广谱抗生素,这种抗生素在杀死莱姆病细菌鲍氏不动杆菌的同时,也杀死了栖息在宿主微生物群中并发挥多种有益功能的其他多种细菌。一些有慢性莱姆病症状或莱姆病反复发作的人常年服用抗生素,尽管这有悖于医学准则,也没有证据证明它有效。本文第一作者、塔夫茨大学医学院分子生物学和微生物学助理教授彼得-格温说:"我们仍在使用的大多数抗生素都是基于几十年前的发现,而抗生素耐药性是许多细菌性疾病日益严重的问题。人们越来越倾向于寻找针对单个细菌特定通路的微量物质,而不是用广谱抗生素来治疗患者,因为广谱抗生素会破坏微生物群并导致抗生素耐药性"。利用"地铁图"计算模型确定的两种化合物分别是一种副作用很大的抗癌药物和一种因副作用而退出市场的哮喘药物。该模型确定的这两种药物都在实验室中进行了测试,发现它们都能成功杀死莱姆病菌--而且只能杀死培养中的莱姆病菌。"莱姆病菌是窄谱药物的绝佳试验案例,因为它的作用非常有限,而且高度依赖环境。这就使它具有其他细菌所不具备的脆弱性,"保罗和伊莱恩-切尔温斯基免疫学教授、分子生物学和微生物学教授、该研究的资深作者胡林登(LindenHu)说。格温和合作者在COVID-19大流行期间开发了这一计算模型,当时他们无法在实验室现场工作,使用这一模型有可能使科学家们跳过一些艰苦的基础科学步骤,从而更快地测试和开发出更有针对性的治疗方法。"我们现在可以利用这个模型筛选类似的化合物,它们没有抗癌药和哮喘药的毒性,但有可能阻止莱姆病过程的相同或另一部分,"最近获得湾区莱姆基金会新兴领袖奖的格温说。格温和胡正在进行其他研究,以确定有慢性莱姆症状的人是否仍然受到感染,或者是免疫功能失调导致了慢性症状。"我可以想象有一天,人们在接受为期两周的针对性莱姆治疗而不是广谱抗生素治疗后,经过检测确定没有感染,然后在慢性症状持续存在的情况下服用药物驯服他们的免疫反应。"格温说,类似的计算"地铁图"还可用于其他基因组相对较小的细菌,如导致性传播疾病梅毒和衣原体的细菌,以及导致落基山斑疹热的立克次体。格温的团队正在研究为其中一些细菌绘制地图。...PC版:https://www.cnbeta.com.tw/articles/soft/1391793.htm手机版:https://m.cnbeta.com.tw/view/1391793.htm

相关推荐

封面图片

新研究揭示了耐抗生素的细菌的分子"超能力"

新研究揭示了耐抗生素的细菌的分子"超能力"艰难梭状芽孢杆菌的插图,具有丰富的鞭毛。科学家们在艰难梭菌中发现了一种增强其抗生素抗性的双重机制,这可能为针对抗性细菌的更有效的治疗策略铺平道路。来自抗生素耐药菌的威胁是众所周知的,因为它很严重。去年,《柳叶刀》杂志报道,2019年估计有127万人死于无法用现有药物治疗的细菌感染。为了应对这一威胁,了解基础的分子机制是至关重要的。在抗生素治疗期间,正常的肠道菌群被扰乱,这为耐抗生素的细菌病原体提供了机会,否则这些细菌会通过与"良好"的肠道细菌竞争而被抑制。最有问题的细菌种类之一是艰难梭状芽孢杆菌,即C.diff。它存在于我们的肠道中,对抗生素治疗有抵抗力,并能引起严重的腹泻感染。这种细菌产生孢子的能力意味着它很容易传播,因此在医疗环境中造成问题,导致死亡率增加和治疗时间延长。VasiliHauryliuk说:"在这种情况下,抗生素不是在拯救你,而是在促进二次细菌感染。众所周知,在使用一种叫做克林霉素的抗生素治疗后,感染C.diff的风险会增加,但其原因不明。"筑波大学助理教授、该研究背后的研究人员之一ObanaNozomu说:"我们的研究显示,一种新型蛋白质传达了对克林霉素所属的抗生素类的抗性。"瑞典、日本、英国、美国、爱沙尼亚和德国的研究人员在一次国际合作中对C.diff的抗药性机制进行了调查,这项研究的结果已经发表在《核酸研究》上。当研究人员确定了一个负责抗性的新型蛋白质。该蛋白在核糖体上工作--核糖体是生产细菌中蛋白质的分子工厂,使细菌具有能力。核糖体是抗生素的主要目标之一:如果不能合成蛋白质,细菌就不会生长、复制并导致感染。"这种新发现的蛋白质将抗生素分子从核糖体中踢出来。我们还看到,它与另一个抗性因子结合。第二个因素对核糖体进行化学修饰,使抗生素分子与它结合得不那么紧密。"隆德大学高级讲师、这篇文章的共同作者GemmaC.Atkinson说:"超强的抗性是两种机制、两种因素结合的结果,这样一来,细菌就拥有了对抗抗生素的'超级力量'。"研究人员使用低温电子显微镜,以便在分子水平上研究对抗生素的抗性机制。这一知识为对抗抗药性和细菌引起的感染的新治疗策略开辟了道路。"几年前,哈佛大学的AndrewG.Myers实验室已经开发了新一代核糖体结合抗生素,被称为伊博霉素。这是一种非常有效的药物,可以击倒'普通'的C.diff细菌。然而,这项研究的结果显示,具有这两种抗性因素的C.diff菌株,不幸的是,对这种抗生素也有抗性。这意味着有必要设计出结合得更紧密的抗生素分子,以克服这种抗性。"VasiliHauryliuk说:"我们现在与迈尔斯小组在这个方向上进行合作。"这项研究还发现,某些针对核糖体的抗生素会诱发抗性因子的产生。这也可能为设计新的抗生素分子提供线索,因为如果不合成抗性因子就不能诱发抗性。...PC版:https://www.cnbeta.com.tw/articles/soft/1360221.htm手机版:https://m.cnbeta.com.tw/view/1360221.htm

封面图片

抗生素和它们的盟友:科学家发现保护肠道微生物组的化合物

抗生素和它们的盟友:科学家发现保护肠道微生物组的化合物这项独特的研究由LisaMaier博士和CamilleV.Goemans博士进行。Goemans博士及其同事的独特研究,分析了144种不同的抗生素对最常见的肠道细菌丰度的影响,为减少抗生素治疗对肠道微生物组的不利影响提供了新的见解。人类肠道中数以万亿计的微生物通过帮助消化、提供营养物质和代谢物以及与免疫系统合作抵御有害细菌和病毒而对健康产生深远影响。抗生素会破坏这些微生物群落,导致失衡,从而导致艰难梭菌感染引起的复发性胃肠道问题,以及肥胖、过敏、哮喘和其他免疫或炎症疾病等长期健康问题。尽管有这种众所周知的附带损害,但由于技术上的挑战,哪些抗生素会影响哪些类型的细菌物种,以及是否能减轻这些负面的副作用还没有被系统地研究。为了了解更多,研究人员系统地分析了用144种不同的抗生素治疗后在肠道中常见的27种不同细菌的生长和存活情况。他们还评估了这些抗生素-细菌组合中超过800种抗生素的最小抑制浓度(MIC)--阻止细菌生长所需的最小抗生素浓度。结果显示,大多数肠道细菌的MIC比致病细菌略高,这表明在常用的抗生素浓度下,大多数被测试的肠道细菌不会受到影响。然而,两类广泛使用的抗生素--四环素类和大环内酯类不仅在比阻止致病菌生长所需的浓度低得多的情况下阻止了健康细菌的生长,而且还杀死了他们测试的一半以上的肠道细菌物种,有可能在很长一段时间内改变肠道微生物组构成。由于药物在不同的细菌物种之间的相互作用不同,研究人员调查了是否可以使用第二种药物来保护肠道微生物。他们将抗生素红霉素(一种大环内酯)和多西环素(一种四环素)与一组1197种药物结合起来,以确定能够保护两种丰富的肠道细菌物种(Bacteriodesvulgatus和Bacteriodesuniformis)免受抗生素影响的合适药物。研究人员确定了几种有希望的药物,包括抗凝血剂地卡因,痛风药物苯溴马隆,以及两种抗炎药物托芬那酸和二氟尼考。重要的是,这些药物并不影响抗生素对致病细菌的效果。进一步的实验表明,这些解毒药物也保护了来自人类粪便样本和活体小鼠的天然细菌群落。德国柏林马克斯-德尔布吕克分子医学中心的UlrikeLöber博士说:"一个国际科学家团队的这项艰巨工作确定了一种新的方法,将抗生素与保护性解毒剂相结合,帮助保持肠道微生物组的健康,减少抗生素的有害副作用,而不影响其效率。尽管我们的研究结果很有希望,但还需要进一步研究,以确定最佳和个性化的解毒药物组合,并排除对肠道微生物组的任何潜在长期影响"。...PC版:https://www.cnbeta.com.tw/articles/soft/1356111.htm手机版:https://m.cnbeta.com.tw/view/1356111.htm

封面图片

研究人员发现一种治疗超级细菌感染的潜在新方法

研究人员发现一种治疗超级细菌感染的潜在新方法这项研究由高威大学的JamesPO'Gara教授和MerveSZeden博士领导,最近发表在mBio杂志上。微生物学教授JamesO'Gara说。"这一发现很重要,因为它揭示了用青霉素类药物治疗MRSA感染的潜在新方法,而青霉素类药物仍然是最安全和最有效的抗生素。"照片显示MRSA生长在两个琼脂平板的表面,一个没有鸟苷(左),一个有鸟苷(右),在这些平板上浸泡了抗生素。抗生素盘周围的清除区表明MRSA被杀死。资料来源:高威大学抗生素耐药性(AMR)危机是对人类健康的最大威胁之一,像MRSA这样的超级细菌给全球医疗资源带来了巨大负担。高威大学的微生物学研究小组表明,当青霉素类抗生素与作为DNA构建块的嘌呤结合时,MRSA可以被更有效地被杀灭。高威大学的博士生AaronNolan和高威大学生物和化学科学学院的MerveSZeden博士资料来源:戈尔韦大学Zeden博士说:"嘌呤核苷、腺苷、黄嘌呤和鸟苷是糖版的DNA构件,我们的工作表明,它们干扰了细菌细胞中的信号系统,而这些信号系统是抗生素抗性所必需的。"由嘌呤衍生的药物已经被用于治疗一些病毒感染和应对癌症。亚伦-诺兰是高威大学的博士生,是该论文的共同第一作者。他说。"寻找使超级细菌对目前许可的抗生素重新敏感的新方法是解决AMR危机的努力的一个关键部分。我们的研究表明,嘌呤核苷有可能使MRSA对青霉素类抗生素重新敏感"。...PC版:https://www.cnbeta.com.tw/articles/soft/1343921.htm手机版:https://m.cnbeta.com.tw/view/1343921.htm

封面图片

新发现的多肽可治疗难以治愈的细菌感染

新发现的多肽可治疗难以治愈的细菌感染弗莱曼最近在《细胞报告-物理科学》(CellReportsPhysicalScience)上发表的一项研究表明,一种来自奶牛的抗菌肽有可能治疗肺炎克雷伯氏菌引起的不治之症。这种细菌通常存在于肠道中,通常是无害的。当它进入人体其他部位时,就会危害健康,并可能引起肺炎、尿路感染和伤口感染。高危人群包括老年人和有其他健康问题(如糖尿病、癌症、肾衰竭和肝病)的患者。然而,年轻人和没有其他健康问题的人也可能因细菌而感染尿道和伤口,而目前的抗生素无法治疗这些感染。美国疾病预防控制中心报告称,抗生素耐药细菌对全球健康的威胁日益严重。2019年的一项研究发现,当年全球有近500万人死于耐药性感染。这些死亡病例中有很大一部分是由肺炎克氏菌造成的,因为它在没有抗生素治疗的情况下死亡率高达50%。当这些细菌生活在生物膜中时,它们的抗药性会更强。生物膜是指微生物粘在一起,并嵌入一种保护性粘液中。最近的研究表明,60%-80%的感染与细菌生物膜有关,生物膜会增加细菌的耐药性。这就像细菌给自己穿上的外衣。她的研究正在探讨如何去除保护膜,使细菌暴露出来,从而被人体免疫系统或目前无法穿过生物膜的抗生素杀死。通过这项研究,弗莱曼发现了奶牛制造的肽如何能够快速杀死肺炎双球菌。中佛罗里达大学医学院伯内特生物医学科学学院的ReneeFleeman正在研究杀死高病毒细菌的药物。资料来源:中佛罗里达大学她确定肽与糖连接相互作用,使粘液保持完整。她将这一过程比作切割链式栅栏。一旦多条链条被切断,粘液结构的完整性就会受到破坏,肽就会进入并消灭不再受到保护的细菌。弗莱曼说:"我们的研究表明,聚脯氨酸肽可以在治疗后一小时内渗透并开始破坏粘液屏障。"这种肽还有另一个优势--一旦它突破了粘液保护屏障,测试表明它比作为治疗不治之症的最后手段的抗生素更能杀死细菌。肽通过在细菌的细胞膜上打洞杀死细菌,与其他从细胞内部抑制生长的抗生素相比,肽能迅速杀死细菌。这种肽还可用作外用疗法,用途广泛,尤其适用于军事领域,用于治疗野战中的开放性伤口。细菌每30分钟就会分裂一次,因此必须迅速采取行动。她下一阶段的研究将试图了解肽功效背后的生物学原理,以及与其他药物的组合是否有助于肽的应用。她的研究得到了美国国立卫生研究院为期三年的"独立之路"R00基金的资助,目前已进入第二年。她的研究最初是作为德克萨斯大学奥斯汀分校的K99奖项开始的,在2022年9月加入UCF之前,她曾在该校工作。弗莱曼说,对耐药性感染的研究必须继续下去,因为它们对健康构成如此大的威胁。她说:"据估计,到2050年,抗生素耐药细菌感染将成为人类死亡的头号原因。我们的工作重点是为这场后抗生素时代的战斗做好准备,在这场战斗中,我们认为理所当然的普通抗生素将不再有效,从而危及癌症治疗、器官移植以及任何依赖于有效抗生素疗法的现代医学进步。"编译来源:ScitechDaily...PC版:https://www.cnbeta.com.tw/articles/soft/1429522.htm手机版:https://m.cnbeta.com.tw/view/1429522.htm

封面图片

人工智能发现新的杀灭超级细菌的抗生素

人工智能发现新的杀灭超级细菌的抗生素每年有超过100万人死于抗生素治疗的耐药感染,可以感染伤口并引起肺炎的鲍曼不动杆菌是最受关注的细菌之一,它是世卫组织确定为"严重"威胁的三种超级细菌之一。它可以在表面和医疗设备上生存,对几乎所有抗生素都有耐药性的情况非常普遍。为了找到一种新的抗生素,研究人员首先必须训练人工智能。他们使用了数千种已知精确化学结构的药物,并在鲍曼不动杆菌上进行人工测试,试验哪种药物可以减慢或杀死它。当这些数据被输入到AI中,AI可以识别出有效的化学特征。然后AI进入到6680种有效性未知的化合物清单,花了一个半小时生成了一份候选名单。结果研究人员测试了240种,发现了9种潜在的抗生素,其中之一就是非常有效的抗生素abaucin。实验表明它可以治疗小鼠感染的伤口,并能够杀死患者的鲍曼不动杆菌样本。奇怪的是,这种实验性抗生素对其他种类的细菌没有影响,而且只对鲍曼不动杆菌有效。——频道:@TestFlightCN

封面图片

这种药物可以让我们在细菌与抗生素的军备竞赛中占据优势

这种药物可以让我们在细菌与抗生素的军备竞赛中占据优势贝勒医学院的一组科学家将目光投向了细菌的这种基因进化,寻找一种药物来减缓变化速度,让抗生素有更多时间来控制感染。“大多数患有细菌感染的人在完成抗生素治疗后都会好转,但也有很多情况下,人们的病情会恶化,因为细菌对抗生素产生了耐药性,抗生素无法再杀死细菌,”通讯作者苏珊·M·罗森伯格博士说贝勒大学分子和人类遗传学、生物化学和分子生物学、分子病毒学和微生物学教授。在这项研究中,研究人员筛选了1120种批准用于人类的现有药物,以找到任何可以减缓大肠杆菌基因突变的药物,并防止其对美国第二大处方抗生素环丙沙星(cipro)产生耐药性。在培养物和小鼠模型中,一种药物——氯化地喹啉(DEQ),最常用作外用抗菌药——显着减缓了细菌的进化,从而使环普罗在对抗感染方面更加有效。“在实验室培养物和感染动物模型中,DEQ与cipro一起减少了抗生素耐药性突变的发生,并且细菌没有对DEQ产生耐药性,”第一作者、罗森伯格研究所的博士后YinZhai说。实验室。“此外,我们在低DEQ浓度下实现了这种突变减缓效果,这对患者来说是有希望的。”减缓进化的药物可能正是这场军备竞赛所需要的。事实上,该研究表明,最终目标是减缓病原体的进化,使人体的免疫系统可以完成工作,并且可能不需要抗生素。细菌在环普罗存在下的应激反应可以使其迅速繁殖,例如在环普罗疗程开始时、结束时或错过任何剂量时。同样的应激反应可以激发细菌的生存技能,通过突变来保护细菌免受药物的侵害。中断这个内置程序的效率是最大化抗生素功效的关键。2019年,全球细菌抗生素耐药性导致近130万人死亡。预计到2050年,每年死亡人数将攀升至1000万人。该研究发表在《科学进展》杂志上。...PC版:https://www.cnbeta.com.tw/articles/soft/1367421.htm手机版:https://m.cnbeta.com.tw/view/1367421.htm

🔍 发送关键词来寻找群组、频道或视频。

启动SOSO机器人