新研究揭示了耐抗生素的细菌的分子"超能力"

新研究揭示了耐抗生素的细菌的分子"超能力"艰难梭状芽孢杆菌的插图,具有丰富的鞭毛。科学家们在艰难梭菌中发现了一种增强其抗生素抗性的双重机制,这可能为针对抗性细菌的更有效的治疗策略铺平道路。来自抗生素耐药菌的威胁是众所周知的,因为它很严重。去年,《柳叶刀》杂志报道,2019年估计有127万人死于无法用现有药物治疗的细菌感染。为了应对这一威胁,了解基础的分子机制是至关重要的。在抗生素治疗期间,正常的肠道菌群被扰乱,这为耐抗生素的细菌病原体提供了机会,否则这些细菌会通过与"良好"的肠道细菌竞争而被抑制。最有问题的细菌种类之一是艰难梭状芽孢杆菌,即C.diff。它存在于我们的肠道中,对抗生素治疗有抵抗力,并能引起严重的腹泻感染。这种细菌产生孢子的能力意味着它很容易传播,因此在医疗环境中造成问题,导致死亡率增加和治疗时间延长。VasiliHauryliuk说:"在这种情况下,抗生素不是在拯救你,而是在促进二次细菌感染。众所周知,在使用一种叫做克林霉素的抗生素治疗后,感染C.diff的风险会增加,但其原因不明。"筑波大学助理教授、该研究背后的研究人员之一ObanaNozomu说:"我们的研究显示,一种新型蛋白质传达了对克林霉素所属的抗生素类的抗性。"瑞典、日本、英国、美国、爱沙尼亚和德国的研究人员在一次国际合作中对C.diff的抗药性机制进行了调查,这项研究的结果已经发表在《核酸研究》上。当研究人员确定了一个负责抗性的新型蛋白质。该蛋白在核糖体上工作--核糖体是生产细菌中蛋白质的分子工厂,使细菌具有能力。核糖体是抗生素的主要目标之一:如果不能合成蛋白质,细菌就不会生长、复制并导致感染。"这种新发现的蛋白质将抗生素分子从核糖体中踢出来。我们还看到,它与另一个抗性因子结合。第二个因素对核糖体进行化学修饰,使抗生素分子与它结合得不那么紧密。"隆德大学高级讲师、这篇文章的共同作者GemmaC.Atkinson说:"超强的抗性是两种机制、两种因素结合的结果,这样一来,细菌就拥有了对抗抗生素的'超级力量'。"研究人员使用低温电子显微镜,以便在分子水平上研究对抗生素的抗性机制。这一知识为对抗抗药性和细菌引起的感染的新治疗策略开辟了道路。"几年前,哈佛大学的AndrewG.Myers实验室已经开发了新一代核糖体结合抗生素,被称为伊博霉素。这是一种非常有效的药物,可以击倒'普通'的C.diff细菌。然而,这项研究的结果显示,具有这两种抗性因素的C.diff菌株,不幸的是,对这种抗生素也有抗性。这意味着有必要设计出结合得更紧密的抗生素分子,以克服这种抗性。"VasiliHauryliuk说:"我们现在与迈尔斯小组在这个方向上进行合作。"这项研究还发现,某些针对核糖体的抗生素会诱发抗性因子的产生。这也可能为设计新的抗生素分子提供线索,因为如果不合成抗性因子就不能诱发抗性。...PC版:https://www.cnbeta.com.tw/articles/soft/1360221.htm手机版:https://m.cnbeta.com.tw/view/1360221.htm

相关推荐

封面图片

科学家开发出能杀死数种超级细菌的新抗生素分子

科学家开发出能杀死数种超级细菌的新抗生素分子细菌正在迅速发展对我们人类最好的药物的抗性,从而使我们处于重大健康危机的边缘。但现在,一种新抗生素已经显示出对几个关键的“超级细菌”有希望与此同时对身体中的好细菌的损害最小。细菌是进化行动的一个教科书式的例子。当它们面临环境危害时,只有最强壮的细菌才能存活下来进行复制,这意味着最终整个群体都有抗药能力。一类被称为革兰氏阴性菌的细菌特别有问题,它们用更厚的细胞壁和拒绝药物的分子泵来保护自己。新抗生素和其他治疗方法的开发进度已经得到了放缓。因此,我们人类正在迅速耗尽有效的抗生素,这有可能使我们回到“医学的黑暗时代”--那个曾经连轻微感染都会致命的年代。从事这项新研究的科学家们现在已经开发出一种表现出前景的新型候选抗生素。研究小组从一种对革兰氏阳性细菌有效的现有抗生素开始,并通过一系列的结构修改试图使其对革兰氏阴性菌株具有更强的抗性。其中一个修改后的化合物特别引人注目。这个被命名为fabimycin的候选药物对200多个临床分离的抗生素耐药菌群效果都表现很好,包括总共54个菌株如大肠杆菌、肺炎克雷伯菌和鲍曼不动杆菌。在对小鼠的测试中,发现fabimycin可以清除肺炎或尿路感染的耐药病例,并使细菌水平甚至低于感染前的水平。重要的是,fabimycin在其攻击中具有相对的选择性并使某些类型的无害细菌不受影响。这比许多现有的抗生素要好得多,因为这些抗生素会不分青红皂白地消灭微生物组中的许多有益细菌从而导致一系列的不良副作用。进一步的发展最终可以将fabimycin或类似的分子添加到我们对抗超级细菌的武器库中,尤其是那些难以治疗的感染。PC版:https://www.cnbeta.com/articles/soft/1303245.htm手机版:https://m.cnbeta.com/view/1303245.htm

封面图片

科学家开发出突破性新型抗生素“Cresomycin” 可躲避细菌抗药性

科学家开发出突破性新型抗生素“Cresomycin”可躲避细菌抗药性UIC生物科学副教授尤里-波利卡诺夫(YuryPolikanov)的研究小组与哈佛大学的同事建立了长期研究合作关系,最新发现了这种前景广阔的新型抗生素。UIC的科学家们提供了对细胞机制和结构的重要见解,帮助哈佛大学的研究人员设计和合成新药。在开发这种新型抗生素的过程中,该研究小组重点研究了许多抗生素是如何与一个共同的细胞目标--核糖体相互作用的,以及耐药细菌是如何改造它们的核糖体来保护自己的。波利卡诺夫说:"半数以上的抗生素都是通过干扰病原菌的蛋白质生物合成来抑制其生长的,这是一个由核糖体催化的复杂过程。抗生素与细菌核糖体结合,破坏了这种蛋白质制造过程,导致细菌入侵者死亡。"但是,许多细菌物种进化出了简单的防御措施来抵御这种攻击。其中一种防御方法是,它们在核糖体上添加一个由一个碳原子和三个氢原子组成的甲基,从而干扰抗生素的活性。科学家们推测,这种防御只是细菌在物理上阻塞了药物与核糖体结合的部位,"就像在椅子上放了个大头针",波利卡诺夫说。但他们发现了一个更复杂的状况,他们在最近发表于《自然-化学生物学》(NatureChemicalBiology)的一篇论文中对此进行了描述。研究人员通过使用一种名为X射线晶体学的方法,以近乎原子级的精度观察抗药性核糖体,他们发现了两种防御策略。他们发现,甲基不仅能物理阻断结合位点,还能改变核糖体内部"内脏"的形状,进一步破坏抗生素的活性。克服细菌防御随后,波利卡诺夫的实验室利用X射线晶体学研究了某些药物是如何规避这种常见的细菌抗药性的,其中包括2021年由UIC/哈佛大学合作发表在《自然》杂志上的一种药物。波利卡诺夫说:"通过确定抗生素与两种抗药性核糖体相互作用的实际结构,我们看到了现有结构数据或计算机建模无法预测的东西。看到一次总比听到一千次要好,我们的结构对于设计这种前景广阔的新型抗生素以及了解它如何设法摆脱最常见类型的抗药性非常重要。"新抗生素"Cresomycin"是人工合成的。它经过预先组织,可以避开甲基基团的干扰,强力附着在核糖体上,破坏核糖体的功能。这一过程包括将药物锁定为预先优化的形状,以便与核糖体结合,从而帮助它绕过细菌的防御。它只是与核糖体结合,就好像它并不关心是否存在这种甲基化,如此一来能轻松克服几种最常见的耐药性。Cresomycin的巨大潜力在哈佛大学进行的动物实验中,这种药物能防止金黄色葡萄球菌、大肠杆菌和铜绿假单胞菌等常见致病菌耐多药菌株的感染。基于这些令人鼓舞的结果,下一步将对Cresomycin在人体中的有效性和安全性进行评估。即使在这一早期阶段,这一过程也证明了结构生物学在设计下一代抗生素和其他救命药物中的关键作用。波利卡诺夫说:"如果没有这些结构,我们就无法了解这些药物是如何与经过修饰的耐药性核糖体结合并发挥作用的。我们确定的结构让我们从根本上了解了这些药物逃避耐药性的分子机制。"编译来源:ScitechDaily...PC版:https://www.cnbeta.com.tw/articles/soft/1419863.htm手机版:https://m.cnbeta.com.tw/view/1419863.htm

封面图片

从果蝇身上提取的化合物可能催生新型抗生素

从果蝇身上提取的化合物可能催生新型抗生素通过干扰翻译的不同阶段(DNA"翻译"成蛋白质分子的过程)可以阻止蛋白质的生成。UIC的科学家们发现,当核糖体到达基因末端的停止信号时,屈螺毒素会与核糖体结合并抑制翻译终止。研究报告的作者、生物分子科学中心和药学院制药科学系特聘教授亚历山大-曼金说:"drosocin是目前已知的第二种能阻止翻译终止的多肽抗生素。 另一种名为apidaecin的抗生素存在于蜜蜂体内,UIC的科学家于2017年首次描述了这种抗生素。"由曼金和药学院研究教授诺拉-巴斯克斯-拉斯洛普(NoraVázquez-Laslop)共同管理的UIC实验室成功地在细菌细胞中直接生产出了果蝇肽及其数百个突变体。曼金说:"在细菌内制造的果蝇肽及其活性突变体迫使细菌细胞自毁。"虽然Drosocin和apidaecin肽的作用方式相同,但研究人员发现它们的化学结构和与核糖体结合的方式不同。"通过了解这些肽的工作原理,我们希望利用相同的机制开发出潜在的新型抗生素。"曼金说:"并排比较这两种肽的成分,有助于设计出各取所长的新抗生素。"...PC版:https://www.cnbeta.com.tw/articles/soft/1372625.htm手机版:https://m.cnbeta.com.tw/view/1372625.htm

封面图片

医学研究人员发现耐抗生素细菌从肠道向肺部转移的首个证据

医学研究人员发现耐抗生素细菌从肠道向肺部转移的首个证据这项新研究探讨的假设是,耐抗生素的肺部感染可能起源于病人的肠道微生物组,而医院的某些治疗可能导致致病菌增殖并从肠道进入肺部。为了研究这一假设,在住院期间对一名重症监护病人进行了数周的深入研究。在住院期间,该病人因尿路感染接受了一种名为美罗培南的抗生素治疗,该抗生素可以消除病人体内的大部分铜绿假单胞菌。然而,治疗过程结束后,剩下的是最耐抗生素的细菌菌株,而抗生素治疗反而刺激了这种最具致病性的细菌的扩散。在几天时间里,研究人员跟踪了该细菌的基因组进展,看着它在肠道中生长,然后转移到肺部。研究人员指出,这是耐抗生素细菌从肠道到肺部的第一个直接证据。"我们的研究显示了肠道-肺部的转移和抗生素的使用是如何结合起来推动AMR[抗生素耐药性]在一个病人体内的传播的,"该研究的主要作者CraigMacLean解释说。"为了开发新的干预措施以预防耐药性感染,我们需要这样的洞察力"。这种新的直接证据提供了可能对抗医院中抗生素耐药性细菌上升的新方法。如果发现这种肠道到肺部的传播很普遍,那么就有可能通过找到防止细菌从肠道移动的方法来对抗这些感染--或者,正如MacLean所建议的,首先开发出防止耐抗生素细菌在肠道定居的方法。MacLean说:"......我们的研究强调了从住院病人的肠道微生物组中消除像铜绿假单胞菌这样的AMR细菌的潜在好处,即使这些细菌实际上并没有造成感染。"该研究发表在《自然医学》杂志上。...PC版:https://www.cnbeta.com.tw/articles/soft/1333605.htm手机版:https://m.cnbeta.com.tw/view/1333605.htm

封面图片

"分子楔子"使超级细菌再次易受抗生素攻击

"分子楔子"使超级细菌再次易受抗生素攻击在人类历史的大部分时间里,细菌感染是生活中常见的一部分,而且往往是致命的。但在20世纪初,科学家们发现了一类新的抗菌药物,首先是青霉素。这些抗生素帮助科学家和医生比以往任何时候都更安全、更有效地进行手术,并降低了肺结核等感染的致命性。当然,事情并没有那么美好。细菌具有很强的适应能力,对我们投掷的每一种药物都能迅速进化出防御能力,因此我们不得不不断开发新的药物。随着时间的推移,我们已经耗尽了我们的武器库,以至于现在出现了"超级细菌",它们对我们的每一种抗生素都具有完全的抗药性,而新抗生素的生产线正在枯竭。这威胁着我们的未来,曾经司空见惯的感染可能再次变得致命。现在,科学家们展示了一种对抗细菌最有效防御策略之一的新方法。一些物种已经进化出了外排泵--细菌膜上的蛋白质可以冲走试图进入细胞的抗生素分子。迄今为止,这对超级细菌来说一直很有效,但研究小组现在发现了能有效抑制这些外排泵的分子。科学家们发现,这些抑制剂就像一个"分子楔子",将自己楔入细菌的内外细胞膜之间。这就阻止了泵的蛋白质部分因药物的存在而相互发送信号,从而让抗生素在细胞内发挥作用。研究小组说,这些分子可以与现有的抗生素一起使用,使药物再次发挥效力。这项研究的主要作者海伦-兹古尔斯卡娅(HelenZgurskaya)说:"我们已经生活在一个后抗生素时代,除非在临床上找到解决抗生素耐药性的新办法,否则情况会变得更糟。"我们的发现将促进新疗法的开发,帮助缓解迫在眉睫的危机。"这项研究发表在《自然通讯》(NatureCommunications)杂志上。...PC版:https://www.cnbeta.com.tw/articles/soft/1374363.htm手机版:https://m.cnbeta.com.tw/view/1374363.htm

封面图片

科学家发现新抗生素类别 可有效对抗耐药细菌

科学家发现新抗生素类别可有效对抗耐药细菌抗生素是现代医学的基础,在上个世纪极大地改善了全世界人民的生活质量。如今,我们往往认为抗生素是理所当然的,并严重依赖抗生素来治疗或预防细菌感染,例如,在癌症治疗、侵入性手术和移植过程中,以及在母亲和早产儿身上,抗生素可以降低感染风险。然而,全球抗生素耐药性的增加日益威胁着抗生素的有效性。为了确保未来能够获得有效的抗生素,开发不存在抗药性的新型疗法至关重要。乌普萨拉大学的研究人员最近在《美国国家科学院院刊》(ProceedingsoftheNationalAcademyofSciencesoftheUSA)上发表了他们的研究成果,介绍了作为多国联合体的一部分而开发的一类新型抗生素。他们描述的这类化合物以一种名为LpxH的蛋白质为靶标,这种蛋白质是革兰氏阴性细菌合成其最外层保护层(即脂多糖)的途径。并非所有细菌都会产生这一层,但那些会产生这一层的细菌包括世界卫生组织确定为最需要开发新型疗法的生物,其中包括已经对现有抗生素产生抗药性的大肠埃希菌和肺炎克雷伯菌。研究人员能够证明,这种新型抗生素对耐多药细菌具有很强的活性,并能治疗小鼠模型中的血液感染,从而证明了这种抗生素的前景。重要的是,由于这一类化合物是全新的,而LpxH蛋白尚未被用作抗生素的靶点,因此这一类化合物不会产生抗药性。这与目前临床开发中的许多"同类"抗生素形成了鲜明对比。虽然目前的研究结果很有希望,但在这类化合物进入临床试验之前,还需要做大量的工作。DOI:10.1073/pnas.2317274121编译来源:ScitechDaily...PC版:https://www.cnbeta.com.tw/articles/soft/1428294.htm手机版:https://m.cnbeta.com.tw/view/1428294.htm

🔍 发送关键词来寻找群组、频道或视频。

启动SOSO机器人