莱斯大学施展量子奇迹:原子之舞让水晶也能变“磁铁”

莱斯大学施展量子奇迹:原子之舞让水晶也能变“磁铁”莱斯大学的研究利用手性声子实现了变革性的量子效应。量子材料是未来高速、高能效信息系统的关键。挖掘其变革潜力的问题在于,在固体中,大量原子往往会淹没电子所携带的奇异量子特性。量子材料科学家朱瀚宇实验室的研究人员发现,当原子绕圈运动时,它们也能创造奇迹:当稀土晶体中的原子晶格产生一种被称为手性声子的螺旋形振动时,晶体就会变成一块磁铁。圆偏振太赫兹光脉冲激发的手性声子在氟化铈中产生超快磁化。氟离子(红色、紫红色)在圆偏振太赫兹光脉冲(黄色螺旋)的作用下开始运动,其中红色表示手性声子模式下运动幅度最大的离子。铈离子用茶色表示。罗盘针代表旋转原子所引起的磁化。资料来源:MarioNorton和罗家明/莱斯大学根据最近发表在《科学》(Science)杂志上的一项研究,将氟化铈暴露在超快脉冲光下,其原子会跳起舞来,瞬间激发电子自旋,使它们与原子旋转对齐。这种排列需要强大的磁场才能激活,因为氟化铈具有天然顺磁性,即使在零度以下也能产生随机定向的自旋。每个电子都有一个磁性自旋,它就像一个嵌入材料中的微小罗盘针,会对局部磁场产生反应,莱斯大学材料科学家兼合著者鲍里斯-雅科布森(BorisYakobson)说。因为互为镜像而不会叠加,本不应该影响电子自旋的能量。但在这种情况下,原子晶格的手性运动会使材料内部的自旋极化,就像施加了一个大磁场一样"。BorisYakobson是莱斯大学KarlF.Hasselmann工程学教授、材料科学与纳米工程学教授以及化学教授。图片来源:JeffFitlow/莱斯大学虽然时间很短,但使自旋对齐的力却大大超过了光脉冲的持续时间。由于原子只在特定频率下旋转,并且在较低温度下移动的时间较长,与频率和温度相关的额外测量进一步证实,磁化是原子集体手性"舞蹈"的结果。朱瀚宇是莱斯大学威廉-马什-莱斯讲座教授兼材料科学与纳米工程助理教授。图片来源:JeffFitlow/莱斯大学"原子运动对电子的影响令人惊讶,因为电子比原子轻得多,速度也快得多,"莱斯大学威廉-马什-莱斯讲座教授、材料科学与纳米工程助理教授朱瀚宇说。"电子通常可以立即适应新的原子位置,忘记其先前的轨迹。如果原子顺时针或逆时针移动,即在时间上向前或向后移动,材料特性将保持不变--物理学家将这种现象称为时间逆对称性。"原子的集体运动打破了时间逆对称性,这一观点相对较新。目前,手性声子已在几种不同的材料中得到实验证明,但它们究竟如何影响材料特性还不甚明了。"我们希望定量测量手性声子对材料电学、光学和磁学特性的影响,"朱瀚宇说。"由于自旋指的是电子的旋转,而声子描述的是原子的旋转,因此人们天真地认为两者可能会相互影响。因此,我们决定重点研究一种叫做自旋-声子耦合的奇妙现象。"自旋-声子耦合在硬盘写入数据等实际应用中发挥着重要作用。今年早些时候,朱的研究小组在单分子层中展示了自旋-声子耦合的新实例,其中原子线性移动,自旋晃动。罗家明是莱斯大学应用物理学研究生,也是这项研究的第一作者。资料来源:JeffFitlow/莱斯大学在他们的新实验中,朱和团队成员必须找到一种方法来驱动原子晶格以手性方式运动。这就要求他们选择正确的材料,并在合作者理论计算的帮助下,以正确的频率产生光线,使其原子晶格旋转。这项研究的第一作者、应用物理学研究生罗佳明解释说:"目前还没有现成的光源能达到我们的声子频率(约10太赫兹)。我们通过混合强红外光和扭曲电场来与手性声子'对话',从而产生光脉冲。此外,我们还采取了另外两种红外光脉冲,分别监测自旋和原子运动。"除了从研究成果中获得有关自旋-声子耦合的见解外,实验设计和设置还将有助于为未来的磁性和量子材料研究提供信息。"我们希望定量测量手性声子产生的磁场能帮助我们制定实验方案,以研究动态材料中的新物理学,我们的目标是通过光或量子波动等外部场来设计自然界不存在的材料。林彤、朱汉宇和罗家明林彤(左起)、朱汉宇和罗家明在EQUAL实验室。图片来源:JeffFitlow/莱斯大学...PC版:https://www.cnbeta.com.tw/articles/soft/1396195.htm手机版:https://m.cnbeta.com.tw/view/1396195.htm

相关推荐

封面图片

科学家运用太赫兹技术开启量子传感之门

科学家运用太赫兹技术开启量子传感之门图为莱斯大学新兴量子和超快材料实验室研究生徐睿制作的三个超快太赫兹场聚光器样品。底层(白色正方形可见)由钛酸锶制成,其表面图案为聚光器结构--可集中太赫兹频率红外光的微观同心圆阵列。这些阵列在显微镜下清晰可见(插图),但用肉眼观察时,就像细粒度的点状图案。图片来源:GustavoRaskosky拍摄/RuiXu/莱斯大学添加插图识别光谱中的差距莱斯大学三年级博士生、最近发表在《先进材料》(AdvancedMaterials)杂志上的一篇文章的第一作者徐睿说:"中红外光和远红外光存在明显的差距,大约在5-15太赫兹的频率和20-60微米的波长范围内,与较高的光学频率和较低的无线电频率相比,目前还没有很好的商业产品。"这项研究是在威廉-马什-莱斯讲座教授、材料科学与纳米工程助理教授朱涵宇(HanyuZhu)的新兴量子与超快材料实验室进行的。量子准电透镜(截面图),可聚焦频率为5-15太赫兹的光脉冲。传入的太赫兹光脉冲(红色,左上角)通过钛酸锶(蓝色)基底上的环形聚合物光栅和圆盘谐振器(灰色)转换成表面声子-极化子(黄色三角形)。黄色三角形的宽度表示声子-极化子在到达用于聚焦和增强出射光的圆盘谐振器(右上角红色)之前,通过每个光栅间隔传播时电场的增加。左下方的钛酸锶分子原子结构模型描述了声子-极化子振荡模式中钛(蓝色)、氧(红色)和锶(绿色)原子的运动。图片来源:Zhu实验室/莱斯大学提供太赫兹间隙的重要性和挑战Zhu说:"这一频率区域的光学技术--有时被称为'新太赫兹间隙',因为它远比0.3-30太赫兹'间隙'中的其他频率区域更难以接近--对于研究和开发用于接近室温的量子电子学的量子材料,以及感知生物分子中的功能基团以进行医学诊断,可能非常有用。"研究人员面临的挑战一直是找到合适的材料来承载和处理"新太赫兹间隙"中的光。这种光会与大多数材料的原子结构产生强烈的相互作用,并很快被它们吸收。莱斯大学材料科学与纳米工程系学生RuiXu是一项研究的第一作者,该研究表明钛酸锶有可能在3-19太赫兹频率下实现高效光子设备。图片来源:GustavoRaskosky拍摄/莱斯大学钛酸锶和量子顺电性Zhu的研究小组利用钛酸锶(一种锶和钛的氧化物)将强相互作用转化为优势。Xu说:"它的原子与太赫兹光的耦合如此强烈,以至于形成了被称为声子-极化子的新粒子,这些粒子被限制在材料表面,不会在材料内部消失。"其他材料支持更高频率的声子-极化子,而且通常支持的范围很窄,而钛酸锶则不同,它支持整个5-15太赫兹间隙的声子-极化子,这是因为钛酸锶具有一种称为量子顺电性的特性。钛酸锶的原子表现出巨大的量子波动和随机振动,因此能有效捕捉光线,而不会被捕捉到的光线自我捕获,即使在零开尔文温度下也是如此。"我们通过设计和制造超快场聚光器,证明了钛酸锶声子-极化子器件在7-13太赫兹频率范围内的概念,"Xu说。"这种器件能将光脉冲挤压到小于光波长的体积内,并保持较短的持续时间。因此,我们实现了每米近千兆伏的强瞬态电场。HanyuZhu是莱斯大学威廉-马什-莱斯讲座教授兼材料科学与纳米工程助理教授。图片来源:JeffFitlow摄影/莱斯大学未来影响与应用电场是如此之强,以至于它可以用来改变材料的结构,从而产生新的电子特性,或者从微量的特定分子中产生新的非线性光学响应,这种响应可以用普通的光学显微镜检测到。Zhu说,他的研究小组开发的设计和制造方法适用于许多市售材料,可以实现3-19太赫兹范围内的光子设备。...PC版:https://www.cnbeta.com.tw/articles/soft/1378127.htm手机版:https://m.cnbeta.com.tw/view/1378127.htm

封面图片

二维材料中首次实现核自旋量子位控制

二维材料中首次实现核自旋量子位控制据15日发表在《自然·材料》上的论文,美国普渡大学的研究人员通过使用光子和电子自旋量子位来控制二维(2D)材料中的核自旋,实现了在2D材料中写入和读取带有核自旋的量子信息。他们用电子自旋量子位作为原子尺度的传感器,首次在超薄六方氮化硼中实现了对核自旋量子位的实验控制。该研究工作拓展了量子科学和技术的前沿,使原子尺度的核磁共振光谱等应用成为可能。研究人员表示,这是第一个展示2D材料中核自旋的光学初始化和相干控制的工作。自旋量子位可以被用作传感器,例如探测蛋白质结构,或者以纳米级分辨率探测目标的温度。捕获在3D金刚石晶体缺陷中的电子能产生10—100纳米范围的成像和传感分辨率,而嵌入在单层或2D材料中的量子位可更接近目标样本,提供更高的分辨率和更强的信号。为实现这一目标,2019年,六方氮化硼中的第一个电子自旋量子位诞生。此次,研究团队在超薄六方氮化硼中建立了光子和核自旋之间的界面。核自旋可以通过周围的电子自旋量子位进行光学初始化——设置为已知的自旋。一旦被初始化,就可以用无线电频率来改变核自旋量子位,本质上是“写入”信息,或者测量核自旋量子位的变化,即“读取”信息。他们的方法一次利用3个氮原子核,其相干时间是室温下的电子量子位的30多倍。2D材料可以直接层叠在另一种材料上,从而形成一个内置的传感器。研究人员表示,2D核自旋晶格适用于大规模的量子模拟。它可在较高的温度下工作。为控制核自旋量子位,研究人员首先从晶格中移除一个硼原子,并用一个电子取代它。电子位于3个氮原子的中心。每个氮核都处于随机自旋态,可以是-1、0或+1。研究人员用激光将电子泵浦到自旋态为0,这对氮核的自旋影响可忽略不计。最后,受激电子与周围的3个氮核之间的超精细相互作用迫使原子核的自旋发生变化。当循环重复多次时,原子核的自旋达到+1状态,无论重复相互作用如何,它都保持不变。当所有3个原子核都设置为+1状态时,它们就可用作3个量子位。PC版:https://www.cnbeta.com/articles/soft/1304905.htm手机版:https://m.cnbeta.com/view/1304905.htm

封面图片

原子分辨率图像揭示手性界面态 有望推动量子计算和节能电子学发展

原子分辨率图像揭示手性界面态有望推动量子计算和节能电子学发展美国劳伦斯伯克利国家实验室领导的国际研究小组,拍摄了第一张原子分辨率图像,直接可视化了手性界面态电控制过程和状态。手性界面态是一种奇异的量子现象。最新研究有助促进量子计算和节能电子学发展。相关论文发表于新一期《自然・物理学》杂志。新发现或有助研究团队构建可调谐的电子通道网络,从而研制出节能微电子和低功耗磁存储设备,以及利用量子反常霍尔绝缘体内奇异电子行为进行量子计算。

封面图片

原子"呼吸" - 量子技术的新构件

原子"呼吸"-量子技术的新构件华盛顿大学的研究人员检测到了原子"呼吸",或原子层之间的机械振动,这可能有助于编码和传输量子信息。他们还创造了一个操纵这些原子振动和光发射的集成设备,推进了量子技术的发展。研究人员还开发了一种装置,可以作为量子技术的一种新型构件,人们普遍预计量子技术未来将在计算、通信和传感器开发等领域有许多应用。研究人员最近在《自然-纳米技术》杂志上发表了他们的发现。"这是一个新的原子级平台,使用科学界所称的'光学机械学',其中光和机械运动被内在地耦合在一起,"高级作者MoLi说,他是华盛顿大学电气和计算机工程及物理学教授。"它提供了一种新型的参与性量子效应,可以利用它来控制通过集成光学电路运行的单光子,用于许多应用。"AdinaRipin此前,该团队曾研究过一种叫做"激子"的量子级准粒子。信息可以被编码到一个激子中,然后以光子的形式释放出来--一个被认为是光的量子单位的微小能量粒子。每个发射的光子的量子属性--如光子的偏振、波长和/或发射时间--可以作为量子比特的信息,或"量子比特",用于量子计算和通信。而且,由于这个量子比特是由光子携带的,它以光速传播。"为了可行地拥有一个量子网络,我们需要有可靠地创建、操作、存储和传输量子比特的方法,"主要作者、华盛顿大学物理学博士生AdinaRipin说。"光子是传输这种量子信息的自然选择,因为光纤使我们能够以高速远距离传输光子,而且能量或信息的损失很低。"研究人员正在研究激子,以便创造一个单光子发射器,或"量子发射器",这是基于光和光学的量子技术的一个关键组成部分。为了做到这一点,研究小组将两层薄薄的钨和硒原子(被称为二硒化钨)放在彼此的上面。LiMo当研究人员测量发射光的光谱时,他们注意到几个等距的峰值。由激子发射的每一个光子都与一个或多个声子耦合在一起。这有点类似于在量子能量阶梯上一次一次地攀登,而在光谱上,这些能量峰值在视觉上被等距的峰所代表。Li说:"声子是二硒化钨材料的自然量子振动,它具有垂直拉伸坐在两层中的激子电子-空穴对的效果,"他也是华盛顿大学QuantumX指导委员会的成员,并且是纳米工程系统研究所的一名教师。"这对激子发射的光子的光学特性有明显的影响,这在以前从未报道过。"研究人员很好奇他们是否能将声子用于量子技术。他们施加电压,看到他们可以改变相关声子和发射的光子的相互作用能量。这些变化是可测量并可控制的,其方式与将量子信息编码到单一的光子发射有关,而这一切都在一个集成系统中完成--一个只涉及少量原子的装置。下一步,该团队计划建立一个波导--芯片上的纤维,捕捉单光子发射并将它们引向它们需要去的地方,然后扩大该系统的规模。该团队不希望一次只控制一个量子发射器,而是希望能够控制多个发射器及其相关的声子状态。这将使量子发射器能够相互"交谈",这是朝着为量子电路建立一个坚实基础迈出的一步。Li说:"我们的首要目标是创建一个带有量子发射器的集成系统,该系统可以使用通过光路运行的单光子和新发现的声子来做量子计算和量子传感,这一进展当然将有助于这一努力,它有助于进一步发展量子计算,而量子计算在未来将有许多应用。"...PC版:https://www.cnbeta.com.tw/articles/soft/1366241.htm手机版:https://m.cnbeta.com.tw/view/1366241.htm

封面图片

创新性原子器件为连接量子计算机提供了更简单的方法

创新性原子器件为连接量子计算机提供了更简单的方法许多专家认为,这些量子中继器将在未来的通信网络中发挥关键作用,可以增强安全性,并实现远程量子计算机之间的连接。今天(8月30日)发表在《自然》(Nature)杂志上的普林斯顿大学研究报告,详细介绍了一种构建量子中继器新方法的基础。它能发送由植入晶体中的单个离子发出的可用于电信的光。该研究的主要作者杰夫-汤普森(JeffThompson)表示,这项工作已经进行了多年。这项工作结合了光子设计和材料科学的进步。其他领先的量子中继器设计发射的是可见光谱光,这种光在光纤中衰减很快,必须经过转换才能进行长距离传输。这种新设备基于植入主晶体中的单个稀土离子。由于这种离子以理想的红外波长发光,因此不需要这种信号转换,从而可以实现更简单、更强大的网络。普林斯顿大学的研究人员创造了一种新方法,利用电信波段波长的光将量子计算机与高保真信号连接起来。图片来源:SameerA.Khan/Fotobuddy拍摄该设备由两部分组成:掺杂少量铒离子的钨酸钙晶体和蚀刻成J形通道的纳米硅片。在特殊激光的脉冲作用下,离子通过晶体向上发光。但硅片--贴在晶体顶部的半导体--会捕捉并引导单个光子进入光缆。理想情况下,这种光子将被编码为来自离子的信息。更具体地说,信息来自离子的量子特性--自旋。在量子中继器中,收集和干扰来自遥远节点的信号将在它们的自旋之间产生纠缠,从而实现量子态的端到端传输,尽管途中会有损耗。汤普森的团队在几年前就开始使用铒离子,但最初的版本使用的是不同的晶体,存在太多噪音。特别是,这种噪声导致发射光子的频率在一个称为光谱扩散的过程中随机跳动。这阻碍了微妙的量子干涉,而量子干涉正是量子网络运行所必需的。为了解决这个问题,他的实验室开始与电气与计算机工程系副教授NathaliedeLeon和著名固态材料科学家、普林斯顿大学罗素-韦尔曼-摩尔化学教授RobertCava合作,探索能容纳噪音更小的单个铒离子的新材料。他们将候选材料从数十万种筛选到几百种,然后是几十种,最后是三种。最终入围的三种材料,每一种都花了半年时间进行测试。第一种材料被证明不够清晰。第二种材料导致铒的量子特性不佳。但第三种材料,即钨酸钙,却恰到好处。为了证明这种新材料适用于量子网络,研究人员制造了一个干涉仪,光子随机通过两条路径中的一条:一条是几英尺长的短路径,另一条是22英里长的长路径(由卷轴式光纤制成)。离子发出的光子可以走长路径,也可以走短路径,大约有一半的时间,连续的光子会走相反的路径,并同时到达输出端。当这种碰撞发生时,量子干涉会导致光子成对离开输出端,前提是它们从根本上无法区分--具有相同的形状和频率。否则,它们将各自离开干涉仪。通过观察到干涉仪输出端对单个光子的强烈抑制(高达80%),研究小组确凿地证明了新材料中的铒离子会发出不可区分的光子。共同领导这项研究的研究生萨利姆-乌拉里(SalimOurari)认为,这使得信号远远超过了高保真阈值。虽然这项工作跨越了一个重要的阈值,但还需要做更多的工作来提高铒离子自旋中量子态的存储时间。研究小组目前正致力于制造更精制的钨酸钙,减少干扰量子自旋态的杂质。...PC版:https://www.cnbeta.com.tw/articles/soft/1380605.htm手机版:https://m.cnbeta.com.tw/view/1380605.htm

封面图片

量子模拟突破:原子间距缩小至50纳米

量子模拟突破:原子间距缩小至50纳米《科学》杂志论文截图在量子力学领域,邻近性占据主导地位。原子越近,它们的相互作用就越强。为了操纵和排列原子,科学家通常先将一团原子云冷却到接近绝对零度,然后使用激光束系统将原子限制在光陷阱中。此次,研究团队首先将原子云冷却到大约1微开尔文,仅比绝对零度高一点点,此时原子几乎处于静止状态。然后,他们用激光将冷冻粒子移动到所需位置。研究人员开发出一种技术,可以将原子排列间隔缩小至50纳米。图片来源:物理学家组织网研究人员使用了两束具有不同频率(颜色)和偏振角度的激光。当两束光穿过超冷原子云时,原子会沿着两束激光的偏振方向调整自旋方向,使光束产生两组相同原子,但是自旋相反。每束激光形成一个驻波,即电场强度在空间上呈周期性变化的图案,其空间周期为500纳米。由于它们的偏振不同,每个驻波都会吸引和聚集两组原子中的一组,这取决于它们的自旋。激光可重叠和调谐,使得它们各自的峰值之间距离只有50纳米,这意味着每个激光峰值所吸引的原子将以同样的50纳米隔开。实验中所用原子为镝,镝是自然界最具磁性的原子之一。研究团队用这种新方法操纵两层镝原子,并将两层之间的距离精确地定位为50纳米。在这种极近距离下,磁相互作用比两层之间相隔500纳米的情况强1000倍。研究团队发现,因原子接近而增强的磁力会导致“热化”,即热量从一层传递到另一层,以及各层之间的同步振荡。当层之间的距离拉大,这些效应就会逐渐减弱。研究人员表示,新技术还可用其他原子来研究量子现象。他们计划用该技术来操纵原子,使其形成一个纯磁性量子门,这是一种新型量子计算机的关键组成部分。...PC版:https://www.cnbeta.com.tw/articles/soft/1429745.htm手机版:https://m.cnbeta.com.tw/view/1429745.htm

🔍 发送关键词来寻找群组、频道或视频。

启动SOSO机器人