机器人化学家RoboChem的速度和准确性均优于人类化学家

机器人化学家RoboChem的速度和准确性均优于人类化学家RoboChem由弗吉尼亚大学范特霍夫分子科学研究所TimothyNoël教授的研究小组开发。他们的论文显示,RoboChem是一种精确可靠的化学家,可以进行各种反应,同时产生极少量的废物。该系统全天候自主工作,能够快速、不知疲倦地提供结果。机器人化学的延时摄影。资料来源:阿姆斯特丹大学Noël介绍说:"一周之内,我们就能优化合成大约十到二十个分子。而这需要一个博士生花费几个月的时间。机器人不仅能获得最佳反应条件,还能提供扩大规模的设置。这意味着我们可以生产与制药业供应商直接相关的数量。"Noël研究小组的专长是流动化学,这是一种新颖的化学方法,用柔性小管系统取代烧杯、烧瓶和其他传统化学工具。在RoboChem中,一根机械针小心翼翼地收集起始材料,并将这些材料混合在半毫升以上的小体积中。RoboChem基于流动化学原理。反应在体积仅为650微升的小管子中流动进行。资料来源:阿姆斯特丹大学然后,这些物质通过管道系统流向反应器。在那里,大功率LED发出的光通过激活反应混合物中的光催化剂,引发分子转换。然后,光流继续流向自动核磁共振波谱仪,以识别转化的分子。这些数据会实时反馈给控制RoboChem的计算机。Noël说:"这是RoboChem的大脑。它利用人工智能处理信息。我们使用一种机器学习算法,它能自主决定进行哪些反应。它始终以最佳结果为目标,并不断完善对化学的理解。"机器人针式取样器精确地选择各种试剂的数量,并巧妙地将它们混合在一起,形成反应溶液。资料来源:阿姆斯特丹大学为了证实RoboChem的成果,研究小组付出了巨大的努力。《科学》论文中收录的所有分子都是经过人工分离和检查的。Noël说,该系统的独创性给他留下了深刻印象:"我从事光催化研究已经十多年了。尽管如此,RoboChem所显示的结果是我无法预测的。例如,它发现了只需要很少光的反应。有时,我不得不挠头去想它到底做了什么。这时你会想,如果是我们,也会这样做吗?现在回想起来,你就会明白RoboChem的逻辑。但我怀疑我们自己是否也能获得同样的结果。至少不会这么快'。RoboChem的核心是一个功能强大的光化学反应器,其特点是有一排非常强大的LED照亮反应溶液。在这里,分子根据人工智能控制器的指令进行转化。资料来源:阿姆斯特丹大学研究人员还使用RoboChem复制了之前在四篇随机选取的论文中发表的研究成果。然后,他们确定了Robochem是否产生了相同或更好的结果。在大约80%的情况下,该系统产生了更好的结果。Noël说:'在另外20%的情况下,结果是相似的。这让我毫不怀疑,人工智能辅助方法将在最广泛的意义上有益于化学发现。"RoboChem和其他"计算机化"化学的意义还在于生成高质量的数据,这将有利于人工智能在未来的应用。在传统的化学发现中,只对少数分子进行深入研究。然后将结果推断到看似相似的分子上。RoboChem生成的数据集完整而全面,每个分子的所有相关参数都能在其中获得。这就提供了更多的洞察力。RoboChem采用机器学习算法处理从系统中获取的数据。它决定执行哪些反应,始终以最佳结果为目标。人工干预只发生在开始阶段,即设置储备溶液和启动RoboChem会话。资料来源:阿姆斯特丹大学另一个特点是,RoboChem系统还能记录"负面"数据。在目前的科学实践中,大多数发表的数据只反映成功的实验。失败的实验也能提供相关数据。但这些数据只能在研究人员的手写实验笔记中找到。这些数据没有公开发表,因此无法用于人工智能驱动的化学研究,RoboChem也将改变这一点。编译来源:ScitechDaily...PC版:https://www.cnbeta.com.tw/articles/soft/1416837.htm手机版:https://m.cnbeta.com.tw/view/1416837.htm

相关推荐

封面图片

机器人解决验证码的速度、准确性都已优于人类

机器人解决验证码的速度、准确性都已优于人类近二十年来,验证码被广泛用作防止机器人的手段,验证码的复杂性和多样性也在不断发展,这种军备竞赛使人类和机器都越来越难以处理验证码。这项研究评估了不同人群的验证码解决性能,其中1400名参与者总共解决了14000个验证码,包括图像分类、滑块、扭曲文本、纠正方位等主流防御方案,结果发现人类的解决速度和准确率都已弱于机器人。投稿:@ZaiHuaBot频道:@TestFlightCN

封面图片

中国科大研制出全流程机器化学家 初步实现智能化学范式

中国科大研制出全流程机器化学家初步实现智能化学范式机器人不仅能成为科学家的科研助手,还能成为科学家?中国科学技术大学(中国科大)青年科研团队通过最新研发成果给出了肯定的答案。“数据智能驱动的全流程人工智能机器化学家”的研究成果论文,已在最新一期《国家科学评论》(NSR)学术期刊发表。PC版:https://www.cnbeta.com/articles/soft/1324039.htm手机版:https://m.cnbeta.com/view/1324039.htm

封面图片

耶鲁大学化学家从海洋生物中分离出独特的抗癌分子

耶鲁大学化学家从海洋生物中分离出独特的抗癌分子将近三十年前,研究人员在原产于热带水域的一类海洋无脊椎动物-苔藓虫内发现了一组独特的抗癌化合物。这些分子的化学结构由氧化环和氮原子组成,结构复杂而密集,引起了全世界有机化学家的兴趣,他们希望在实验室中从头开始重新创造这些结构。然而,尽管付出了相当大的努力,这仍然是一项难以实现的任务。现在,耶鲁大学的一个化学家小组在《科学》杂志上撰文指出,他们采用一种将创造性的化学策略与最新的小分子结构测定技术相结合的方法,首次成功合成了其中的八种化合物。"这些分子一直是合成化学领域的一项杰出挑战,"耶鲁大学文理学院米尔顿-哈里斯(MiltonHarris),化学教授、新研究的通讯作者塞斯-赫松(SethHerzon)说。"许多研究小组都曾试图在实验室中重现这些分子,但它们的结构非常致密、错综复杂,因此一直无法实现。从本世纪初我还是一名研究生的时候,我就一直在阅读有关合成这些化合物的文章"。在自然界中,这些分子存在于某些种类的外肛动物门动物体内,它们是小型水生动物,通过细小的触手过滤水中的猎物。全世界的研究人员都认为苔藓虫是新药物的潜在宝贵来源,许多从苔藓虫中分离出来的分子已被研究用作新型抗癌剂。然而,分子的复杂性往往限制了它们的进一步发展。赫松的研究小组研究了一种名为"Securiflustrasecurifrons"的贝类。他介绍说:"大约十年前,我们曾研究过这些分子,虽然当时没有成功地再现它们,但我们对它们的结构和化学反应性有了深入的了解,这为我们的思考提供了依据。"新方法涉及三个关键的战略要素。首先,Herzon和他的团队避免在整个过程的最后阶段构建反应性杂环(即吲哚)。杂环包含两个或两个以上的元素,而这种特定的环是众所周知的反应性环,会产生问题。其次,研究人员使用了被称为氧化光环化的方法来构建分子中的一些关键键。其中一种光环化反应涉及杂环与分子氧的反应,耶鲁大学的哈里-瓦瑟曼(HarryWasserman)在20世纪60年代首次对这种反应进行了研究。最后,赫松和他的团队采用了微晶电子衍射(MicroED)分析来帮助观察分子结构。在这种情况下,传统的结构测定方法是不够的。新方法的成果是八种具有治疗潜力的新合成分子,并有望产生更多新化学物质。"就分子量而言,它们与我们实验室研究的其他分子相比并不算大。但从化学反应性的角度来看,它们是我们所面临的最大挑战之一"。赫松介绍说,同时他也是耶鲁大学癌症中心的成员,并在耶鲁大学医学院药理学和放射治疗学领域担任联合职务。编译自:ScitechDaily...PC版:https://www.cnbeta.com.tw/articles/soft/1422681.htm手机版:https://m.cnbeta.com.tw/view/1422681.htm

封面图片

中国有机化学家陈庆云逝世 享年94岁

中国有机化学家陈庆云逝世享年94岁中国著名有机化学家、中国科学院上海有机化学研究所研究员陈庆云星期四(3月2日)逝世,享年94岁。据澎湃新闻报道,中国科学院上海有机化学研究所星期五(3月3日)在讣告中写道,陈庆云先生是中国有机氟化学开拓者之一,为中国氟化学、氟工业的发展和人才培养做出了重要贡献。陈庆云出生于1929年1月,1952年毕业于北京大学化学系,同年参加工作。他在1956年至1960年在苏联科学院元素有机化合物研究所作研究生,获副博士学位;1963年起在中科院上海有机化学研究所工作;1993年当选为中国科学院院士。据中科院官网介绍,陈庆云长期从事有机氟化学和氟材料的研究工作,对六氟丙酮的反应作了开创性研究。他系统地研究全氟磺酸的化学,发现许多的特殊性质和反应,如全氟磺酸全氟烷基酯在与亲核试剂反应时,只发生硫氧键断裂,为全氟烷烃不能发生双分子亲核取代反应这一规律首次提供例证。陈庆云另一项主要工作,是系统地研究了全氟碘代烷的单电子转移反应。这一研究工作不仅为有机氟化物的合成提供了多种有效途径,而且更重要的是将当代有机化学最重要理论之一——单电子转移反应,引入并发展了氟化学。

封面图片

化学家解开长期困扰他们的聚合物科学之谜

化学家解开长期困扰他们的聚合物科学之谜包含分子力探针(中央结构)的聚合物链被内爆空化泡(中央圆圈)周围的流场扭曲的艺术效果图。资料来源:利物浦大学RomanBoulatov教授在最近发表在《自然-化学》(NatureChemistry)杂志封面上的一篇论文中,利物浦的研究人员利用机械化学来描述溶液中的聚合物链如何对周围溶剂流动的突然加速做出反应。这一新方法使过去50年来一直困扰聚合物科学家的一个基本技术问题终于有了答案。大分子溶质在快速流动中的碎裂具有相当重要的基础和实际意义。人们对链断裂前的分子事件序列知之甚少,因为此类事件无法直接观察到,而必须根据流动溶液的主体成分变化来推断。在此,我们介绍了如何通过分析聚苯乙烯链的断裂与嵌入其主干的发色团的异构化之间的同链竞争,详细描述超声溶液中发生机械化学反应的链的分子几何分布。在最新的实验中,过度拉伸(机械负载)的链段沿着主干生长和漂移,其时间尺度与机械化学反应相同,并且与机械化学反应竞争。因此,碎裂链只有小于30%的骨架被过度拉伸,最大力和最大反应概率都位于远离链中心的位置。因此,量化链内竞争对于任何速度足以使聚合物链断裂的流动都可能具有机理意义。历史挑战和影响自20世纪80年代以来,研究人员一直试图了解溶解聚合物链对突然加速的溶剂流的独特反应。然而,他们一直受限于高度简化的溶剂流,对真实世界系统行为的洞察力有限。利物浦化学家RomanBoulatov教授和RobertO'Neill博士的这一新发现对物理科学的多个领域具有重要的科学意义,同时在实际操作层面也对许多价值数百万美元的工业流程(如提高油气回收率、长距离管道和光伏制造)中使用的基于聚合物的流变控制具有重要意义。RomanBoulatov教授说:"我们的发现解决了聚合物科学中的一个基本技术问题,并有可能颠覆我们目前对空化溶剂流中链行为的理解。"该论文的共同作者罗伯特-奥尼尔博士补充说:"我们的方法论证明揭示了我们对聚合物链如何响应空化溶液中溶剂流动的突然加速的理解过于简单,无法支持系统设计新的聚合物结构和成分,以在这种情况下实现高效、经济的流变控制,也无法获得对流动诱导机械化学的基本分子见解。我们的论文对我们在分子长度尺度上研究非平衡聚合物链动力学的能力具有重要影响,从而使我们有能力回答关于能量如何在分子间和分子内流动,以及能量如何从动能转化为势能再转化为自由能的基本问题。"研究小组计划重点扩大他们的新方法的范围和能力,并利用这种方法绘制分子级物理图谱,从而准确预测聚合物、溶剂和流动条件任意组合的流动行为。...PC版:https://www.cnbeta.com.tw/articles/soft/1385755.htm手机版:https://m.cnbeta.com.tw/view/1385755.htm

封面图片

德国明斯特大学的化学家开发出一种新的分水方法

德国明斯特大学的化学家开发出一种新的分水方法然而,由于水分子非常稳定,将其分裂成氢和氧对化学家来说是一个巨大的挑战。要想成功,首先必须使用催化剂激活水分子,这样水分子才更容易发生反应。由德国明斯特大学有机化学研究所ArmidoStuder教授领导的研究小组开发出了一种光催化工艺,在这种工艺中,水在温和的反应条件下通过三芳基膦而不是像大多数其他工艺那样通过过渡金属复合物被激活。在光能(LED)的作用下,水(H2O)中的氢原子(H)被转移到膦-水自由基阳离子上。这一重要的自由基中间体可进一步将氢原子(白色)转移到基质上。蓝色区域表示电子自旋分布。图片来源:ChristianMück-Lichtenfeld研究小组最近在《自然》(Nature)杂志上发表的这一研究成果,将为高度活跃的自由基化学研究领域打开一扇新的大门。通常自由基是高活性的中间体。研究小组使用一种特殊的中间体膦水自由基阳离子作为活化水,从中可以轻易地拆分出H2O中的氢原子,并转移到另一种底物上。"反应由光能驱动。"ArmidoStuder说:"我们的系统为研究利用氢原子作为合成试剂的未研究化学过程提供了一个理想的平台"。ChristianMück-Lichtenfeld博士使用理论方法分析了活化水复合物,他说:"这种中间体中的氢氧键异常微弱,因此可以将氢原子转移到各种化合物中。"进行实验工作的张晶晶博士补充说:"在所谓的氢化反应中,活化水的氢原子可以在非常温和的条件下转移到烯烃和炔烃中"。氢化反应在医药研究、农用化学工业和材料科学领域都非常重要。...PC版:https://www.cnbeta.com.tw/articles/soft/1382041.htm手机版:https://m.cnbeta.com.tw/view/1382041.htm

🔍 发送关键词来寻找群组、频道或视频。

启动SOSO机器人