光谷实验室攻克短波红外成像芯片新技术:成本降至百分之一

光谷实验室攻克短波红外成像芯片新技术:成本降至百分之一据介绍,胶体量子点一体化异质集成红外技术的核心优势在于:1.图像分辨率高,理论上像素尺寸仅受限于艾利斑直径;2.溶液法低温加工,与任何形貌的基底均兼容;3.探测波段高度可定制化,探测波段不受衬底吸收影响;4.可大面积加工,兼容12寸CMOS晶圆制备工艺。在食品检测、半导体检测等工业应用中,基于短波红外成像的机器视觉如同机器的“眼睛”,具有重要意义;而成像芯片作为成像系统最核心部件,对成像质量以及相机成本均起着决定性作用。传统铟镓砷短波红外芯片造价非常昂贵,因此短波红外相机均价高达25万元,严重制约着市场增长。光谷实验室团队通过4年时间,全力攻关量子点技术,通过低温的溶液法制备工艺,实现可与硅基芯片一体化集成的量子点短波红外成像芯片,其探测波段范围远超传统铟镓砷芯片,同时制造成本仅不到百分之一。光谷实验室团队面向手机模组、车载相机等消费级应用场景,已申请十五项发明专利,已获授权七项,当前产品已应用在车载应用、水果分拣、物质检测、半导体检测、安防监控等领域,并与华为知名企业展开合作。...PC版:https://www.cnbeta.com.tw/articles/soft/1422712.htm手机版:https://m.cnbeta.com.tw/view/1422712.htm

相关推荐

封面图片

NASA开发的创新型红外传感器提高了地球和空间成像的分辨率

NASA开发的创新型红外传感器提高了地球和空间成像的分辨率戈达德工程师MurzyJhabvala拿着他的紧凑型热成像仪技术的核心部件--一种高分辨率、高光谱范围的红外传感器,适用于小型卫星和前往其他太阳系天体的任务。资料来源:美国国家航空航天局这些相机配备了高灵敏度、高分辨率的应变层超格传感器,这些传感器最初是由美国宇航局位于马里兰州格林贝尔特的戈达德太空飞行中心开发的,由内部研究与开发(IRAD)计划资助。由于设计紧凑、重量轻、用途广,TilakHewagama等工程师可以根据不同的科学应用对它们进行定制。增强的传感器功能Hewagama说:"将滤光片直接连接到探测器上,消除了传统镜头和滤光片系统的巨大质量。这使得低质量的仪器拥有了一个紧凑的焦平面,现在可以使用更小、更高效的冷却器进行红外探测。小型卫星和任务可以从其分辨率和精确度中获益。"工程师MurzyJhabvala在马里兰州格林贝尔特的美国宇航局戈达德太空飞行中心领导了最初的传感器开发工作,并领导了今天的滤波器集成工作。Jhabvala还领导了国际空间站上的"紧凑型热成像仪"实验,该实验展示了新传感器技术如何在太空中生存,同时也证明了其在地球科学领域的重大成功。通过两个红外波段捕捉到的1500多万张图像为发明者贾巴拉、NASA戈达德同事唐-詹宁斯(DonJennings)和康普顿-塔克(ComptonTucker)赢得了2021年年度发明奖。2019年和2020年,紧凑型热成像仪在国际空间站上捕捉到了澳大利亚异常严重的火灾。凭借其高分辨率,它探测到了火锋的形状和位置,以及火锋距离居民区有多远--这些信息对急救人员至关重要。资料来源:美国国家航空航天局地球和空间观测的突破这次试验获得的数据提供了有关野火的详细信息,让人们更好地了解了地球云层和大气层的垂直结构,并捕捉到了由地球陆地特征引起的上升气流,这种上升气流被称为重力波。这种突破性的红外传感器利用层层重复的分子结构与单个光子(或光的单位)相互作用。这种传感器能以更高的分辨率分辨更多波长的红外线:从轨道上看,每个像素的分辨率为260英尺(80米),而目前的热像仪的分辨率为1000至3000英尺(375至1000米)。这些热量测量相机的成功吸引了美国国家航空航天局地球科学技术办公室(ESTO)、小企业创新与研究以及其他计划的投资,以进一步扩大其覆盖范围和应用。Jhabvala和NASA的先进陆地成像热红外传感器(ALTIRS)团队正在为今年的激光雷达、高光谱和热成像仪(G-LiHT)机载项目开发六波段版本。他说,这种首创的相机将测量地表热量,并能以高帧频进行污染监测和火灾观测。新一代火灾成像技术美国国家航空航天局戈达德地球科学家道格-莫顿(DougMorton)领导了一个ESTO项目,开发用于野火探测和预测的紧凑型火灾成像仪。莫顿说:"我们不会看到更少的火灾,因此我们正试图了解火灾在其生命周期中是如何释放能量的。这将帮助我们更好地理解在一个越来越易燃的世界中火灾的新特性。"CFI将同时监测释放更多温室气体的最热火灾和产生更多一氧化碳以及烟雾和灰烬等空气传播颗粒的较冷、燃烧的煤炭和灰烬。莫顿说:"在安全和了解燃烧释放的温室气体方面,这些都是关键因素。"莫顿的团队设想,在对火情成像仪进行机载测试后,他们将装备一个由10颗小型卫星组成的舰队,每天提供更多的火情图像,从而提供全球火情信息。他说,结合下一代计算机模型,"这些信息可以帮助森林服务和其他消防机构预防火灾,提高前线消防员的安全,保护火灾路径上居民的生命和财产安全"。探测地球内外的云层美国国家航空航天局戈达德地球科学家吴栋说,该传感器装有偏振滤光片,可以测量地球高层大气云层中的冰颗粒是如何散射和偏振光的。吴说,这一应用将补充美国国家航空航天局的浮游生物、气溶胶、云层和海洋生态系统(PACE)任务,该任务在上个月早些时候揭示了其首批光图像。两者都测量光波的偏振方向与红外光谱不同部分的传播方向的关系。他解释说:"PACE偏振计监测可见光和短波红外光。这项任务将重点关注白天观测到的气溶胶和海洋颜色科学。在中波和长波红外波段,新的红外偏振计将从白天和夜间观测中捕捉云层和表面特性。"在另一项工作中,Hewagama正在与Jhabvala和Jennings合作,加入线性可变滤光片,以提供红外光谱中更多的细节。这些滤光片可以显示大气分子的旋转和振动以及地球表面的成分。行星科学家卡莉-安德森(CarrieAnderson)说,这项技术也能让前往岩质行星、彗星和小行星的任务受益匪浅。她说,他们可以识别土星卫星恩克拉多斯(Enceladus)巨大羽流中释放出的冰和挥发性化合物。"它们本质上是冰的喷泉,"她说,"当然是冷的,但发出的光在新红外传感器的探测范围之内。在太阳的背景下观察这些羽流,可以让我们非常清楚地识别它们的成分和垂直分布。"编译来源:ScitechDaily...PC版:https://www.cnbeta.com.tw/articles/soft/1432581.htm手机版:https://m.cnbeta.com.tw/view/1432581.htm

封面图片

国产红外热成像大厂被美国列入SDN名单 官方回应

国产红外热成像大厂被美国列入SDN名单官方回应据介绍,睿创微纳全资子公司艾睿光电专注于红外成像技术和产品的研发制造,具有完全自主知识产权,致力于为全球客户提供专业的、有竞争力的红外热成像产品和行业解决方案。美国国务院网站称,将艾睿光电被列入SDN清单的原因是,该公司向俄罗斯客户提供美国工业和安全局发布的高优先级物品清单当中的产品,包括伸缩式热成像瞄准镜。对于艾睿光电被列入SDN清单一事,睿创微纳表示,艾睿光电在海外无分支机构,公司正在对子公司艾睿光电被列入SDN清单产生的影响进行评估,并将制定有效的应对措施。此次子公司艾睿光电被列入SDN清单不会影响公司及其他子公司业务开展,对公司整体影响可控。当前,公司经营及财务情况一切正常,在手订单充足,市场开拓工作有序推进。官网信息显示,睿创微纳成立于2009年12月,注册资本1.8亿元,是一家从事专用集成电路、特种芯片设计与制造技术开发的国家高新技术企业,深耕红外、微波、激光三大领域,掌握多光谱传感研发的核心技术与AI算法研发等能力,为全球客户提供MEMS芯片、ASIC处理器芯片、红外热成像全产业链产品和激光、微波产品及光电系统。艾睿光电的睿创微纳的核心的红外热成像业务子公司。睿创微纳主要产品为小面阵、QVGA、VGA、XGA、SXGA、金属封装探测器系列、陶瓷封装探测器系列、晶圆级封装探测器系列、XCoreLA系列机芯、XCoreMicro机芯、XCoreLT系列机芯、XCoreNano机芯、户外手持红外热成像仪系列、智能手机热像仪、多功能头盔式热像仪、车载红外热成像仪系列、融合式双光望远镜、多功能手持望远镜。目前,睿创微纳的产品广泛应用于工业测温、汽车夜间辅助驾驶、安防监控、森林防火、建筑节能评估、消费电子以及物联网等诸多领域。2019年6月,睿创微纳在科创板上市。值得注意的是,在新冠疫情期间,市场对于红外测温设备需求暴涨,导致了相关元器件的供应紧缺与价格暴涨。其中,红外探测器和MEMS机芯则是红外成像系统的核心组件。而在当时,睿创微纳则是为数不多的国产红外探测器及MEMS机芯供应商,除了自产自用外,还有向海康威视、华中数控等红外整机厂商提供红外测温探测器或机芯。根据睿创微纳此前公布财报显示,2023年,睿创微纳实现营业总收入35.59亿元,同比增长34.50%;归母净利润4.96亿元,同比增长58.21%;扣非净利润4.36亿元,同比增长75.22%。另外,睿创微纳2024年一季度财报显示,该季度营收约10.07亿元,同比增加27.47%;归母净利润约1.29亿元,同比增加57.56%;扣非净利润为1.15已元,同比增长51.72%。虽然睿创微纳称此次列入SDN清单的子公司艾睿光电在海外无分支机构,不会影响公司及其他子公司业务开展,对公司整体影响可控。但是,也不排除后续会对于其及其他子公司海外业务的影响。财报显示,睿创微纳2023年在海外市场的销售收入继续保持增长态势,实现境外主营业务收入14.19亿元,较上年同期增长6.83%,占当期主营业务收入的40.74%。值得一提的是,今年4月7日傍晚,睿创微纳曾发布公告称,国家监察委员会已经对公司实际控制人、董事长兼总经理马宏先生实施留置。据了解,留置是监察机关对涉嫌职务违法或犯罪行为的被调查人,可能出现法定妨碍调查的情形,在一定时间内将其留在特定场所配合调查的一种强制性措施。...PC版:https://www.cnbeta.com.tw/articles/soft/1429804.htm手机版:https://m.cnbeta.com.tw/view/1429804.htm

封面图片

新的相机系统利用太赫兹波长实现更好的成像

新的相机系统利用太赫兹波长实现更好的成像它们可以穿透许多材料并捕捉新的细节水平,重要的是这种辐射是非电离的,这意味着它在用于人类时比X射线更安全。问题是,采集太赫兹波长的探测器可能很笨重、缓慢、昂贵,难以在实际条件下运行,或者是这些因素的某种组合。但是在一项新的研究中,麻省理工学院、三星公司和明尼苏达大学的研究人员开发了一个系统,可以快速、精确地检测太赫兹脉冲,并在常规室温和压力下进行。这个新系统的关键是所谓的量子点。最近的工作表明,这些微小的颗粒在受到太赫兹波的冲击时将发出可见光的荧光,然后可见光可以被传统的相机探测器捕获。由此产生的图像不仅可以检测到低强度的太赫兹脉冲,而且还有可能揭示出光束的偏振情况。该设备是由多层堆叠而成的。首先是一个由窄缝分隔的纳米级金线阵列,然后是一个量子点层。上面有一个传统的CMOS图像传感器,当量子点被传入的太赫兹波击中时,它可以捕捉到量子点发出的可见光。对于能够捕获光束偏振的探测器版本,水平狭缝被一层环形狭缝所取代。在测试中,该团队表示,新设备能够以远低于现有系统的强度水平采集太赫兹脉冲,同时也更小,制造成本更低。事实上,该设备的每一层都可以使用目前的微芯片制造技术来制造。最重要的是,目前的系统都无法捕捉到偏振现象。然而,在这项技术可能准备好进行商业化之前,仍有很多工作要做。特别是,该团队说,太赫兹辐射的来源仍然相当麻烦,但它们的复杂性在未来也可能会下降。成像并不是太赫兹辐射的唯一潜在用途--这些波长也准备在未来十年左右成为6G通信系统的基础。这项新研究发表在《自然-纳米技术》杂志上。...PC版:https://www.cnbeta.com.tw/articles/soft/1332009.htm手机版:https://m.cnbeta.com.tw/view/1332009.htm

封面图片

中国电科自研首款九谱段高清相机组件成功开机

中国电科自研首款九谱段高清相机组件成功开机据悉,四维宽幅焦面电子学组件是我国首次投入应用的九谱段TDICCD产品,具备一系列独特优势。其高传函特性确保了图像信息的准确传递,大动态范围则使得组件能够在不同光照条件下都能保持优异的性能。此外,强抗晕特点有效防止了因强光干扰而导致的图像失真。该成像组件在常见的全色、红、绿、蓝、近红外波段基础上,新增了沿海气溶胶、黄、红边等四个波段,共计九个波段。这种多波段设计使得卫星具备了0.5米的高分辨率,以及130公里以上的超大宽幅成像能力。这一突破性的技术进步,为我国在国土资源调查、城市管理、环境保护、防灾减灾等领域的应用提供了有力支撑。随着卫星在轨运行,四维宽幅焦面电子学组件将充分利用其高分宽幅成像能力,获取高质量的影像数据。这些数据将服务于去云雾、林地分类、植被检测等多种定量化应用场景,为我国在各个领域的应用提供重要的数据支持。电科芯片此次研发的成功,不仅展示了我国在电子学组件领域的强大研发实力,也为我国未来的卫星遥感技术发展奠定了坚实基础。未来,随着技术的不断进步和应用领域的不断拓展,四维宽幅焦面电子学组件有望为我国在更多领域的应用发挥更大作用。...PC版:https://www.cnbeta.com.tw/articles/soft/1427620.htm手机版:https://m.cnbeta.com.tw/view/1427620.htm

封面图片

中国商务部决定对镓、锗相关物项实施出口管制 全球半导体产业将受影响

中国商务部决定对镓、锗相关物项实施出口管制全球半导体产业将受影响众所周知,以上相关镓类物项和锗类物项大都属于重要的化合物半导体材料,而金属镓、金属锗、区熔锗锭、锗外延生长衬底则属于制备镓类或锗类相关化合物半导体所须的材料。作为全球金属镓、金属锗储量及产量最大的国家之一,中国此次对镓、锗相关物项实施出口管制,无疑将会对全球的半导体产业造成重大影响。具体对镓、锗相关物项资料,由芯智讯整理如下:金属镓金属镓是一种稀有的蓝色或银白色的金属,其产品熔点很低,但沸点很高,是一种性能优良的电子原材料,下游应用领域广泛,主要应用于制作光学玻璃、真空管、半导体的重要原料。根据美国地质调查局(USGS)公布的数据,目前全球金属镓的储量约为27.93万吨,而中国的储量最多,达到19万吨,占全球储量的68%左右;相比之下,美国的储量还不到中国的1/40,只有0.45万吨。从产量来看,中国产量占比全球镓产量最高。德国和哈萨克斯坦分别于2016年和2013年停止了镓生产。(2021年德国宣布将在年底前重启初级镓生产),匈牙利和乌克兰分别于2015年和2019年停止镓生产,中国镓占比全球镓产量持续提升,截止2021年,占比全球镓产量已超90%。氮化镓氮化镓是近年来比较热门的第三代化合物半导体材料。相对于传统的硅(Si)和砷化镓(GaAs)半导体材料,氮化镓具有许多优点,例如高电子流动率、高饱和漂移速度、高电子密度和高热导率。这些特性使氮化家在高功率电子器件(比如快充充电器)、高速光电子器件、高亮度发光二极管(LED)和高效能太阳能电池等领域有广泛应用。此外,氮化家还被用于制造紫外线激光器、无线电通信设备、医疗器械等。氮化镓氧化镓则是一种“超宽禁带半导体”材料,也属于“第四代半导体”,与第三代半导体碳化硅、氮化镓相比,氧化镓的禁带宽度达到了4.9eV,高于碳化硅的3.2eV和氮化镓的3.39eV,更宽的禁带宽度意味着电子需要更多的能量从价带跃迁到导带,因此氧化镓具有耐高压、耐高温、大功率、抗辐照等特性。并且,在同等规格下,宽禁带材料可以制造diesize更小、功率密度更高的器件,节省配套散热和晶圆面积,进一步降低成本。值得注意但是,在2022年8月,美国商务部产业安全局(BIS)对第四代半导体材料氧化镓和金刚石实施出口管制,认为氧化镓的耐高压特性在军事领域的应用对美国国家安全至关重要。此后,氧化镓在全球科研与产业界引起了更广泛的重视。磷化镓磷化镓是由元素镓与元素磷合成的Ⅲ—Ⅴ族化合物半导体,常温下其纯度较高的为橙红色透明固体。磷化镓是制作半导体可见发光器件的重要材料,主要用作制造整流器,晶体管、光导管、激光二极管和致冷元件等。磷化镓和砷化镓是具有电致发光性能的半导体,是继锗和硅之后的所谓第三代半导体。与砷化镓不同,磷化镓是一种间接带隙材料。当引入能形成等电子陷阱的杂质后,其发光效率会大大提高,并且能根据引入杂质的不同而发出不同颜色的光来。例如在磷化镓中掺入氮则发绿Chemicalbook光,掺入锌-氧对则发红光,因此磷化镓是制作可见光发光二极管和数码管等光电显示器件的重要材料,此外还可用来制作光电倍增管、光电存储器、高温开关等器件。砷化镓砷化镓是当前主流的第二代化合物半导体材料之一。其具有高频率、高电子迁移率、高输出功率、高线性以及低噪声等特点,在光电和射频领域有着非常广泛的应用。比如,砷化镓可以用来制作LED(发光二极管),主要是黄光、红光和红外光(氮化镓禁带更宽,主要用来发蓝光、绿光和紫外光),具有效率高、器件结构精巧简单、机械强度大、使用寿命长等特点。如果砷化镓作为发光材料,加上泵浦源和谐振腔,即可选频制成激光器。典型应用就是VCSEL(垂直腔表面发射激光器),广泛应用在短距离数据中心光纤通信,结构光/TOF人脸识别等。另外,砷化镓的电子迁移率是硅的五倍,HBT的Ft高达45GHz,0.25umEmodepHEMT的Ft更是高达70GHz,因此砷化镓非常适合设计Sub-7GHz的射频器件。蜂窝和WLANPA也常用砷化镓HBT设计;开关、LNA等则采用砷化镓pHEMT工艺。铟镓砷铟镓砷是一种III-V族半导体,具有晶格匹配性好、带隙可调节、大尺寸产品均匀性好等优点,是第四代半导体材料,也是新一代红外发光材料,在光电芯片、红外探测器、传感器等领域拥有巨大应用价值。在光电芯片领域,为制造体积更小、功能集成度更高的晶体管,传统硅材料已无法满足需求,砷化铟镓可达到此要求。在红外探测器领域,砷化铟镓可用作短波红外光电材料,制造短波红外探测器,也可以与其他III-V族半导体相配合制备超晶格材料,例如以磷化铟为衬底,外延生长砷化铟镓,制备得到InP/InGaAs超晶格,此材料稳定性高、均匀度高,以其为敏感材料制造而成的红外探测器,具有高灵敏度、高可靠性、低功耗、低成本等优点,可以广泛应用在智能驾驶、安防监控、仪器仪表等领域。在传感器领域,由于砷化铟镓灵敏度高,可制造InGaAs红外扫描相机,是OCT(光学相干断层扫描)的关键组成部分,可提高人体组织穿透性,并实现高速成像。OCT是新型医学影像技术,在生物组织活体检测与成像方面效果显著,在临床上可以广泛应用在眼科、牙科、皮肤科、癌症早期诊断等方面,是医疗领域重要疾病诊断技术之一,此外也可以应用于工业测量领域。硒化镓硒化镓是一种重要的二元半导体,它具有各向异性、较宽的带隙、新奇的光学和电学性质等特性。这使得硒化镓在太阳能电池、光探测器及集成光电子器件等领域有很好的应用前景。另外,由于硒化家晶体具有优异的抗干扰性能和低损耗性能,它可以用于高精度技术应用,如高精度电子仪器、电气控制系统和光学系统。此外,硒化家晶体还具有优异的耐腐蚀性和低氧化性,可以用于各种酸性和碱性腐蚀性环境中的应用,是一种优良的精密机械制造材料。锑化镓锑化镓属于III-V族化合物窄带隙半导体,外观为灰白色晶体状,为立方晶系、闪锌矿结构。锑化镓是第四代半导体材料中窄带隙半导体的代表性产品之一,具有电子迁移率高、功耗低的特点,其禁带宽度可以在较宽的范围内进行调节,在中长波红外波段探测性能优异。锑化镓常用作衬底材料,可以广泛应用在红外探测器、激光器、发光二极管、光通信、太阳能电池等行业中。在光通信中,波长越长的光在传输过程中损耗越低,工作波长2-4μm的非硅材料光传输损耗更低,锑化镓可以工作在此波段范围内,并且能够与其他III-V族材料晶格常数相匹配,制得的GaSb/GaInAsSb等产品光谱范围符合光通信的低损耗要求。据了解,发展锑化物半导体材料是整个光通讯领域中核心技术发展的战略方向之一。锑化镓半导体主要应用于光纤通讯的发射基站,其传输信号的频率可以达到300赫兹以上。锑化镓(锑化物半导体材料)未来在6G等应用上,可能是不可替代的传输载体。在红外探测器领域,锑化镓凭借光谱覆盖范围宽、频带宽度可调节的优势,以其为衬底制备的二类超晶格材料例如InAs/GaSb探测性能优异、成像质量高,可制造高性能红外焦平面成像阵列,特别是在中红外探测器制造中具有不可替代性,而红外焦平面成像阵列具有多色、大面阵、功能集成化的特点,是第三代红外探测器。除此之外,锑化镓在太阳能电池中也有巨大应用价值。2017年7月,美国乔治华盛顿大学与其他科研机构、高校...PC版:https://www.cnbeta.com.tw/articles/soft/1368771.htm手机版:https://m.cnbeta.com.tw/view/1368771.htm

封面图片

我国空间新技术试验卫星第二批科学与技术成果发布

我国空间新技术试验卫星第二批科学与技术成果发布0146.5nm极紫外成像仪获得我国首幅太阳过渡区图像46.5nm极紫外太阳成像仪(SUTRI)是国际首台基于多层膜窄带滤光技术的46.5nm太阳成像仪,用于探测50万度左右的太阳过渡区(太阳色球与日冕之间的层次),由国家天文台联合北京大学、同济大学、西安光学精密机械研究所和微小卫星创新研究院共同研制。自2022年8月30日载荷开机以来已经获取了超过1.6TB的探测数据,成功实现了我国首次太阳过渡区探测。这也是人类近半个世纪来首次在46.5nm波段拍摄太阳的完整图像。SUTRI拍摄的图像清晰地显示了过渡区网络组织、活动区冕环系统、日珥和暗条、冕洞等结构(如图2),这些结构的观测特征表明,SUTRI拍摄的确实是从太阳低层大气往日冕过渡的结构,符合预期。SUTRI已探测到多个耀斑、喷流、日珥爆发和日冕物质抛射事件(如图3),表明其数据适合研究各种类型的太阳活动现象。此外,SUTRI还发现活动区普遍存在50万度左右的、朝向太阳表面的物质流动,这些流动在太阳大气的物质循环过程中占有重要地位。目前SUTRI一切功能正常,在轨测试和标定结束后,SUTRI观测的科学数据将向国内外太阳物理和空间天气同行全部开放。△图1“创新X”首发星——空间新技术试验卫星(SATech-01)△图2SUTRI在2022年9月29日观测到的太阳活动图(图片由SUTRI科学团队提供)△图3SUTRI在2022年9月23日观测到的一次太阳爆发事件(图片由SUTRI科学团队提供)02高能爆发探索者(HEBS)捕获到迄今为止最亮伽马暴由中科院高能物理研究所研制的高能爆发探索者(HEBS)于北京时间2022年10月9日21时17分,与我国慧眼卫星和高海拔宇宙线观测站同时探测到迄今最亮的伽马射线暴(编号为GRB221009A)。根据HEBS的精确测量结果,该伽马暴比以往人类观测到的最亮伽马射线暴还亮10倍以上。由于该伽马射线暴的亮度极高,国际上绝大部分探测设备均发生了严重的数据饱和丢失、脉冲堆积等仪器效应,难以获得精确测量结果。HEBS凭借创新的探测器设计以及新颖的高纬度观测模式设置,探测器经受住了高计数率的考验,获得了高时间分辨率的光变曲线,以及10千电子伏至5兆电子伏的宽能段能谱。HEBS极为宝贵的精确测量结果对于揭示伽马射线暴的起源和辐射机制具有重要意义。国家天文台和上海技术物理研究所研制的EP探路者(7.300,-0.07,-0.95%)龙虾眼X射线成像仪(LEIA)于10月12日也成功对这一伽马射线暴开展了观测,探测到了伽马射线暴X射线余辉。这也是国际上首次用龙虾眼型X射线望远镜探测到伽马射线暴。△图4高能爆发探索者(HEBS)发现并精确测量迄今最亮的伽马射线暴,打破多项纪录。03国产量子磁力仪首次空间应用并获得全球磁场图由中国科学院国家空间科学中心和沈阳自动化研究所联合研制的国产量子磁力仪(CPT)及伸展臂,可实现全球地磁矢量和标量高精度测量。2022年11月7日,多级套筒式无磁伸展臂顺利展开,将各传感器探头伸出约4.35米距离,处于伸展臂顶端的CPT原子/量子磁力仪探头、AMR磁阻磁力仪探头、NST星敏感器获取了有效探测数据,首次在轨验证了磁场矢量和姿态一体化同步探测技术,磁测量噪声峰峰值<0.1nT,实现了国产量子磁力仪的首次空间验证与应用。△图5CPT磁测系统“多级套筒式无磁伸展臂”地面展开测试(图片由沈自所、空间中心和卫星团队提供)△图6 量子磁力仪首张全球磁场勘测图(图片由空间中心太阳活动与空间天气重点实验室提供)△图7NST星敏感器相对于卫星本体的姿态数据(图片由空间中心和中科新伦琴NST星敏团队提供)04空间载荷、平台新技术成果丰富由中国科学院长春光学精密机械与物理研究所空间新技术部研制的多功能一体化相机,首次采用基于共口径多出瞳光学系统新体制,在轨实现集可见光、长波红外、彩色微光于一体的空间光学遥感观测。相机于2022年9月24日开机,成功取得首张170km×42km大幅宽地面遥感图像(如图8),探索了单台相机即可同时实现多谱段多模态遥感成像的新模式,为我国未来高集成度一体化空间光学遥感载荷发展提供了技术储备。△图8 多功能一体化相机对地宽幅遥感成像图(图片由长春光学精密机械与物理研究所提供)由中国科学院半导体研究所、自动化研究所、微小卫星创新研究院及浙江大学航空航天学院空天信息技术研究所联合研制的异构多核智能处理单元也取得了首批成果。半导体所的低功耗边缘计算型智能遥感视觉芯片,实现了遥感图像的高速智能化目标检测;自动化所的通用智能系统验证了基于高速交换网络的异构多处理器模块化、弹性化硬件架构;浙江大学的国产AI系统装载了细胞分割算法和飞机识别算法,数据结果与地面孪生系统数据一致,在功耗10瓦条件下算力达到22Tops,验证了国产AI器件的在轨智能图像处理能力。△图9 边缘计算型遥感视觉芯片检测遥感目标示意图(图片由中科院半导体所提供)中科院微小卫星创新院的可展收式辐射器成功在轨实现首次应用,辐射器执行机构已顺利完成六十余次展开和收拢动作,连续五轨动态试验结果(如图10)表明环路热管-可展收式辐射器集成系统在负载工作时段启动性能良好,辐射器连续展开-收拢可实现散热能力在轨大范围调控。△图10 环路热管-可展收式辐射器集成系统连续五轨智能热控测试结果国家空间科学中心研制的空间元器件辐射效应试验平台载荷开机运行良好,搭载的元器件在测试期间均工作正常。“科学与技术成果的涌现体现了我们对这颗卫星‘创新X,创新无极限’的定位,开创了新技术众筹模式的先河。”“力箭一号”工程副总师兼卫星系统总师张永合说,“这些新载荷、新技术产品都是各参与方自主投入的,不少是从0到1的创新,通过试验星将创新技术快速集成并飞行验证,可以加快核心关键技术从基础研究到在轨应用的成果转化。”2022年7月27日12时12分,由中国科学院自主研制的迄今我国最大固体运载火箭“力箭一号”(ZK-1A)在酒泉卫星发射中心成功发射,采用“一箭六星”的方式,将“创新X”系列首发星——空间新技术试验卫星等六颗卫星送入预定轨道。2022年9月5日,空间新技术试验卫星(SATech-01)发布了首批科学成果,包括龙虾眼X射线成像仪(LEIA)的国际首幅宽视场X射线聚焦成像天图,伽马射线暴载荷(HEBS)的首个伽马暴等。作为我国“创新X”系列的首发星,未来一段时间,空间新技术试验卫星搭载的几种新型推进系统等载荷也将开展在轨试验,卫星上的四个科学载荷也已进入常规化观测,陆续将会获得更多科学和技术成果。(总台央视记者帅俊全褚尔嘉)...PC版:https://www.cnbeta.com.tw/articles/soft/1338673.htm手机版:https://m.cnbeta.com.tw/view/1338673.htm

🔍 发送关键词来寻找群组、频道或视频。

启动SOSO机器人