新型分子光开关可以以三种不同的形式存在 有望打开数据存储新时代

新型分子光开关可以以三种不同的形式存在有望打开数据存储新时代这项研究开发了一种方法,可通过控制倍率和光异构化条件在不同形式之间进行定量切换。图片来源:LucieWohlrábová/IOCBPrague尽管科学家们知道类似的分子可以进入第三种状态,但他们选择不对其进行研究。理由是他们无法控制各个分子形态之间的转换,第三种形态的存在只会使分子的行为复杂化。现在,TomášSlanina博士领导的研究小组的研究人员克服了这一障碍。由博士生JakubCopko和TomášSlanina博士共同撰写的相关论文现已发表在《化学通讯》(ChemicalCommunications)杂志上。论文作者之一JakubCopko说:"我们能够随心所欲地在三种状态之间精确、有选择地切换分子。"光开关的结构变化通常表现为其宏观特性的改变。例如,当暴露在特定参数的光线下时,分子会改变颜色,甚至肉眼可见。例如,蓝色可以变成黄色,反之亦然,这两种颜色可以分别被视为0和1。因此,单个分子的功能与内存位相同,也很容易读取。TomášSlanina博士指出:"不过,它们之间有一个区别,那就是由于体积微小,它们能够存储的信息量要比硅基芯片多出一个数量级:这一切只有在光开关足够稳定,不会在没有光的情况下自发地在不同状态之间切换的情况下才能实现。正是这一要求至今难以满足,因此专家们甚至从未尝试过在一个分子内实现向第三种状态的转换。多亏了我们现在的发现,这才成为可能。"从第二种状态过渡到第三种状态时,发生重大变化的不是颜色,而是分子的几何形状。当需要对分子进行"塑形",使其与目标活性中心相吻合,或反之,将其挤出目标活性中心时,这一点就显得尤为方便。所有这些都是由特定波长的光脉冲触发的。可能的实际应用范围非常广泛。然而,由于它是最近才发现的,专家们才刚刚开始发掘它的潜力。JakubCopko(左)和布拉格IOCB氧化还原光化学组组长TomášSlanina。图片来源:TomášBelloň/布拉格IOCBTomášSlanina小组的科学家们长期以来一直在研究光开关。具体来说,他们一直在关注一种被称为"fulgids"的物质,尽管与其他光开关相比,这种物质通常具有更好的特性,但全世界只有少数几个实验室在研究这种物质。原因很简单:迄今为止,它们的制备非常复杂。不过,JakubCopko也设法消除了这一障碍。他解释说:"当我开始攻读博士学位时,我需要花费长达一个月的时间才能制备出一个fulgids。现在,多亏了我们的化学捷径,一个下午就能做好。"他采用所谓的单锅反应,即所有化学转化都在一个烧瓶中进行,无需分离和纯化所有中间产物。这不仅大大加快了制备过程,而且使反应更纯净,产率更高,并减少了对环境的影响。TomášSlanina补充道:"我们正在努力确保fulgids不仅仅是教科书上的一类物质,而是能够得到更广泛的关注。它可以推动全球光开关领域的发展。"得益于他的研究小组的工作,这种光开关的制备现在变得非常简单,即使没有任何光开关化学方面的经验,也可以在任何合成化学实验室完成。编译自:ScitechDaily...PC版:https://www.cnbeta.com.tw/articles/soft/1426261.htm手机版:https://m.cnbeta.com.tw/view/1426261.htm

相关推荐

封面图片

变色晶体:揭开分子开关的未来

变色晶体:揭开分子开关的未来折叠和扭曲的异构体吸收不同波长的光。资料来源:菅原一马等人,《材料化学前沿》。2023年2月8日北海道大学和九州大学的研究人员开发了一种技术,从蒽醌二甲醚(AQD),一组过度拥挤的有机分子中合成潜在的分子开关。这项研究由北海道大学的石垣祐介副教授和九州大学的小野利和副教授领导,发表在《材料化学前沿》杂志上。新化合物的甲基衍生物有四种不同的异构体,各自有不同的晶体结构。资料来源:KazumaSugawara,etal.MaterialChemistryFrontiers.2023年2月8日"AQD是一种过度拥挤的乙烯,分子中的碳-碳双键被大型化学基团包围,"小野解释说。"它们有两种常见的异构体,即折叠的和扭曲的形式。它们作为分子开关特别有趣,因为它们的立体阻碍性双键可以提供吸收和发射不同波长的光的异构体。"AQD通常采用最稳定的折叠或扭曲形式,因此很难分离出任何其他异构体的纯样品来研究其特性。研究人员通过设计灵活的AQD衍生物克服了这一障碍,这些衍生物可以更容易和稳定地形成不同的异构体。当研磨成无定形固体并用适当的溶剂处理时,光的吸收和发射发生变化。资料来源:KazumaSugawara,etal.MaterialsChemistryFrontiers.2023年2月8日合成的衍生物不仅能够稳定地形成扭曲和折叠的异构体,而且在不同的溶剂中重结晶时还能形成其他的异构形式。研究人员对这些衍生物进行了详细分析,以充分了解它们的特性。北海道大学的作者TakanoriSuzuki(左)、KazumaSugawara(中)和YusukeIshigaki(右)。资料来源:石垣祐介在晶体状态下,这些异构体中的每一种都吸收和发射不同频率的光,这是由于异构体分子中电子分布的不同。有趣的是,当晶体被研磨成无定形固体时,光的吸收和发射发生了变化,用适当的溶剂处理后,可以产生原始的或其他具有各种颜色的晶体。YoshioYano(左)和ToshikazuOno(右),来自九州大学的作者。Credit:ToshikazuOno"这项工作是关于分离AQD多种异构体形式的第一份报告,"Ishigaki总结道。"它们对不同光频的吸收和发射,更重要的是,通过外部刺激调控吸收和发射的能力,使这些化合物成为开发分子开关的优秀候选者。"...PC版:https://www.cnbeta.com.tw/articles/soft/1353559.htm手机版:https://m.cnbeta.com.tw/view/1353559.htm

封面图片

探索未来的数据存储技术 - 科学家取得超分子化学领域的突破

探索未来的数据存储技术-科学家取得超分子化学领域的突破在大数据和先进的人工智能时代,传统的数据存储方法已显得力不从心。为了满足对大容量和高能效存储解决方案的需求,开发新一代技术至关重要。其中,电阻式随机存取存储器(RRAM)依靠改变电阻水平来存储数据。最近发表在《AngewandteChemie》杂志上的一项研究详细介绍了一个研究小组的工作,他们开创了一种制造超分子忆阻器的方法,而忆阻器是构建纳米随机存取存储器的关键部件之一。忆阻器(memristor,memory-resistor的缩写)会根据施加的电压改变电阻。然而,在分子尺度上构建忆阻器是一项巨大的挑战。虽然可以通过氧化还原反应实现电阻切换,而且分子的带电状态很容易通过溶液中的反离子来稳定,但这种稳定在忆阻器所需的固态结中却很难实现。现在,中国北京清华大学李原领导的研究小组选择了超分子方法。它基于一种双稳态的索烃,这意味着它在氧化态和还原态都很稳定,可以以正电、负电或不带电的状态存在。索烃是由两个大分子环组成的系统,这两个环就像链条中的两个链节一样环环相扣,但没有化学键。为了构建忆阻器,研究小组将索烃沉积在涂有含硫化合物的金电极上,通过静电作用将其结合在一起。在此基础上,他们又放置了第二个电极,该电极由涂有氧化镓的镓铟合金制成。索烃在两个电极之间形成了一个由扁平分子组成的自组装单层。这种被命名为AuTS-S-(CH2)3-SO3-Na+//[2]catenane//Ga2O3/EGaIn的组合形成了忆阻器。正如RRAM所要求的那样。这些新型超分子忆阻器可根据外加电压在高阻态(关)和低阻态(开)之间切换。这些分子电阻开关实现了至少1000次擦除-读取(开)-写入-读取(关)循环。接通和断开之间的切换时间大大小于一毫秒,可与商用无机忆阻器媲美。分子开关可在几分钟内"记住"设定状态-开或关。这使它们成为具有非易失性存储能力的高效分子忆阻器的一个非常有前途的起点。此外,它们还具有二极管或整流器的功能,这使它们成为开发分子纳米忆阻器的有趣元件。...PC版:https://www.cnbeta.com.tw/articles/soft/1400983.htm手机版:https://m.cnbeta.com.tw/view/1400983.htm

封面图片

一种由富勒烯单分子制成的开关可让执行速度提高100万倍

一种由富勒烯单分子制成的开关可让执行速度提高100万倍富勒烯分子实现的开关过程可以比微芯片中使用的开关快得多,速度提高了三到六个数量级,这取决于利用的激光脉冲。富勒烯开关在网络中的使用可能会加速计算机行业的发展,其能力已超过目前电子晶体管所能达到的水平。此外,它们有可能通过提供前所未有的分辨率水平来彻底改变微观成像设备。70多年前,物理学家发现,分子在电场存在的情况下会发射电子,后来又发现了某些波长的光。电子发射产生的图案吸引了人们的好奇心,但却无法解释。但是,由于一项新的理论分析,这种情况已经改变,其影响不仅可以带来新的高科技应用,而且可以提高我们仔细研究物理世界本身的能力。关于富勒烯开关如何像火车轨道开关点一样工作的一个简单比喻。光脉冲可以改变进入的电子的路径,这里用火车表示。项目研究员HirofumiYanagisawa和他的团队从理论上分析了富勒烯受激分子的电子发射在暴露于特定种类的激光时应如何表现,并且在测试他们的预测时,发现他们是正确的。Yanagisawa说:"我们在这里设法做的是使用非常短的红色激光脉冲来控制分子引导入射电子的路径的方式。根据光的脉冲,电子可以保持其默认的路线,或者以一种可预测的方式重新定向。因此,它有点像火车轨道上的开关点,或电子晶体管,只是速度快得多。我们认为我们可以实现比经典晶体管快100万倍的开关速度。而这可能会转化为现实世界中的计算性能。但同样重要的是,如果我们能够调整激光来诱骗富勒烯分子同时以多种方式开关,这可能就像在一个分子中拥有多个微观晶体管。这可以增加系统的复杂性,而不增加其物理尺寸"。作为开关基础的富勒烯分子与也许更为著名的碳纳米管有关,尽管富勒烯不是一个管子,而是一个碳原子球。当放在一个金属点上时--基本上是一个针的末端--富勒烯以某种方式定向,因此它们将可预测地引导电子。飞秒(四亿分之一秒)或甚至阿托秒(五亿分之一秒)规模的快速激光脉冲被集中在富勒烯分子上,以触发电子的发射。这是第一次用激光以这种方式来控制分子的电子发射。"这项技术类似于光电子发射显微镜产生图像的方式,"Yanagisawa说。"然而,那些人最多只能达到10纳米左右的分辨率,或百亿分之一米。我们的富勒烯开关增强了这一点,并允许实现大约300皮米的分辨率,或百亿分之三米。"原则上,由于多个超快电子开关可以结合到一个分子中,只需要一个富勒烯开关的小网络就可以执行可能比传统微芯片快得多的计算任务。但是有几个障碍需要克服,例如如何使激光组件小型化,这对创造这种新型的集成电路至关重要。因此,我们看到基于富勒烯开关的智能手机可能仍然需要很多年。...PC版:https://www.cnbeta.com.tw/articles/soft/1349135.htm手机版:https://m.cnbeta.com.tw/view/1349135.htm

封面图片

科学家发现一个控制寿命的分子开关CHIP

科学家发现一个控制寿命的分子开关CHIP一个单一的蛋白质可以比在一个群体中更有效地控制衰老信号。根据最近的研究,蛋白质CHIP在单独行动时能比在成对状态下更有效地控制胰岛素受体。在细胞应激情况下,CHIP经常以同源二聚体的形式出现--两个相同的蛋白质的联合体--主要功能是破坏错误折叠的和有缺陷的蛋白质。PC版:https://www.cnbeta.com/articles/soft/1315009.htm手机版:https://m.cnbeta.com/view/1315009.htm

封面图片

化学家们合成了一种来自于海绵分子的人工形式 可以对抗帕金森症

化学家们合成了一种来自于海绵分子的人工形式可以对抗帕金森症在一个令人惊讶的转折中,研究小组利用了一种不寻常的、长期被忽视的化合物,即环烯,来控制在实验室中创造该分子的可用形式所需的化学反应的一个关键阶段。据该团队称,这一突破有可能有利于开发其他复杂的分子用于制药研究。他们的研究结果发表在《科学》杂志上。加州大学洛杉矶分校化学和生物化学系KennethN.Trueblood教授和该研究的通讯作者NeilGarg说:"今天绝大多数的药物是由合成有机化学制成的,我们在学术界的作用之一是建立新的化学反应,可以用来快速开发药物和具有复杂化学结构的分子,使世界受益。"Garg说,使这些合成有机分子的发展复杂化的一个关键因素被称为"手性"。许多分子--包括lissodendoricacidA--可以以两种不同的形式存在,它们在化学上是相同的,但彼此是三维镜像,就像左手和右手。每个版本都被称为对映异构体。当用于制药时,一个分子的对映异构体可能具有有益的治疗效果,而另一个可能完全没有作用--甚至证明是危险的。不幸的是,在实验室中创造有机分子时,往往会产生两种对映异构体的混合物,而用化学方法去除或逆转不需要的对映异构体,会给整个过程带来困难、成本和延误。为了应对这一挑战,并快速有效地只生产几乎只在自然界中发现的lissodendoricacidA的对映异构体,Garg和他的团队在他们的12步反应过程中采用了环烯烃作为中间物。这些高活性的化合物在20世纪60年代首次被发现,此前从未被用来制造如此复杂的分子。"环烯烃,自从半个多世纪前发现以来,它们在很大程度上被遗忘了。这是因为它们具有独特的化学结构,并且在生成时只存在几分之一秒。"该团队发现,他们可以利用这些化合物的独特品质来生成环烯烃的一个特定手性版本,这反过来又导致了化学反应,最终几乎完全产生了所需的lissodendoricacidA分子的对映异构体。化学家们说,虽然能够合成生产lissodendoricacidA的类似物是测试该分子是否可能拥有适合未来治疗的品质的第一步,但合成该分子的方法可以立即让参与制药研究的其他科学家受益。Garg说:"通过挑战传统思维,我们现在已经学会了如何制造环烯烃,并利用它们来制造像lissodendoricacidA这样的复杂分子。我们希望其他人也能使用环烯烃来制造新药。"...PC版:https://www.cnbeta.com.tw/articles/soft/1345513.htm手机版:https://m.cnbeta.com.tw/view/1345513.htm

封面图片

哥伦比亚大学工程师开发出光控分子设备

哥伦比亚大学工程师开发出光控分子设备利用光来控制电子特性,哥伦比亚工程公司的新型单分子器件具有直接的金属-金属接触,标志着分子电子学的重大进展,有望提高电子元件的微型化和效率。资料来源:文卡特拉曼实验室挑战随着设备不断缩小,其电子元件也必须微型化。使用有机分子作为导电通道的单分子器件有可能解决传统半导体所面临的微型化和功能化难题。这种器件提供了利用光进行外部控制的令人兴奋的可能性,但到目前为止,研究人员还无法证明这一点。分子电子学先驱、劳伦斯-古斯曼应用物理学教授兼哥伦比亚大学工程学院化学教授拉塔-文卡塔拉曼(LathaVenkataraman)说:"通过这项工作,我们开启了分子电子学的一个新维度,即可以用光来控制分子如何在两个金属电极之间的间隙中结合。"这就像是在纳米尺度上打开了一个开关,为设计更智能、更高效的电子元件开辟了各种可能性。"方法近二十年来,Venkataraman的研究小组一直在研究单分子器件的基本特性,探索纳米尺度上物理、化学和工程学的相互作用。她的研究重点是构建具有各种功能的单分子电路,即一个分子连接两个电极,电路结构以原子精度定义。她的研究小组以及利用碳基二维材料石墨烯制造功能器件的研究小组都知道,在金属电极和碳系统之间建立良好的电接触是一项重大挑战。解决方案之一是使用有机金属分子,并设计出将电导线与分子内的金属原子连接起来的方法。为了实现这一目标,他们决定探索使用有机金属含铁二茂铁分子,这种分子也被认为是纳米技术世界中的微小积木。就像乐高积木可以堆砌出复杂的结构一样,二茂铁分子也可以用作构建超小型电子设备的积木。研究小组使用了一种以二茂铁基团为端基的分子,该分子由两个碳基环戊二烯环组成,环戊二烯环夹着一个铁原子。然后,他们利用二茂铁分子的电化学特性,在分子处于氧化状态(即铁原子失去一个电子)时,在二茂铁铁中心和金(Au)电极之间形成直接键合。在这种状态下,他们发现二茂铁可以与用于连接分子和外部电路的金电极结合。从技术上讲,氧化二茂铁可以使Au0与Fe3+中心结合。该研究的第一作者WoojungLee是Venkararaman实验室的一名博士生,他说:"通过利用光诱导氧化,我们找到了一种在室温下操纵这些微小构件的方法,为未来在分子水平上利用光控制电子设备的行为打开了大门。"潜在影响Venkataraman的新方法将使她的团队能够扩展用于创建单分子器件的分子终端(接触)化学类型。这项研究还表明,利用光来改变二茂铁的氧化态,就能打开或关闭这种接触,从而展示了一种基于二茂铁的光开关单分子器件。这种光控器件可为开发响应特定光波长的传感器和开关铺平道路,从而为各种技术提供用途更广、效率更高的元件。团队这项工作是一项涉及合成、测量和计算的合作成果。合成工作主要由MichaelInkpen在哥伦比亚大学完成,他曾是Venkataraman小组的博士后,现在是南加州大学的助理教授。所有的测量工作都是由Venkataraman小组的研究生WoojungLee完成的。计算由文卡塔拉曼小组的研究生和德国雷根斯堡大学的合作者共同完成。下一步行动研究人员目前正在探索光控单分子器件的实际应用。这可能包括优化器件性能、研究它们在不同环境条件下的行为,以及完善金属-金属界面所带来的其他功能。...PC版:https://www.cnbeta.com.tw/articles/soft/1423925.htm手机版:https://m.cnbeta.com.tw/view/1423925.htm

🔍 发送关键词来寻找群组、频道或视频。

启动SOSO机器人