研究人员首次将卡皮查-迪拉克效应可视化

研究人员首次将卡皮查-迪拉克效应可视化超快卡皮查-狄拉克(Kapitza-Dirac)效应产生的随时间变化的干涉条纹。一个电子波包暴露在两个反向传播的超短激光脉冲下。从背面到正面的时间跨度为10皮秒。由法兰克福歌德大学的莱因哈特-多尔纳(ReinhardDörner)教授领导的中德研究小组成功地利用这种卡皮查-狄拉克效应将电子波的时间演变(即电子的量子力学相位)可视化。研究人员现已在《科学》杂志上发表了他们的研究成果。多尔纳说:"最初建造实验装置的是我们研究所的前博士研究员亚历山大-哈同(AlexanderHartung)。他离开后,在法兰克福团队工作了4年的亚历山大-冯-洪堡研究员康林得以利用它来测量随时间变化的卡皮查-迪拉克效应。要做到这一点,还需要进一步发展理论描述,因为当时卡皮查和狄拉克并没有具体考虑电子相的时间演化。"在实验中,法兰克福的科学家们首先从相反的方向向氙气发射了两个超短激光脉冲。在交叉点上,这些飞秒脉冲--飞秒是一秒的四千万亿分之一--产生了几分之一秒的超强光场。这将电子从氙原子中撕裂出来,即电离了氙原子。不久之后,物理学家又向以这种方式释放出来的电子发射了第二对短激光脉冲,也在中心形成了驻波。这些脉冲稍微弱一些,没有引起任何进一步的电离。不过,它们现在能够与自由电子相互作用,可以借助法兰克福开发的COLTRIMS反应显微镜进行观察。COLTRIMS团队,ReinhardDörner(从左至右)、MarkusSchöffler、SinaJacob、MaksimKunitski、TillJahnke、AlexanderHartung、SebastianEckart。资料来源:歌德大学"在相互作用点,有三种情况可能发生,"Dörner说。"要么电子不与光线发生相互作用,要么光线向左或向右散射。根据量子物理定律,这三种可能性加起来就是一定的概率,反映在电子的波函数中:可以说,电子(以一定概率)可能所在的云状空间坍缩成了三维切片。在这里,波函数的时间演变及其相位取决于电离与第二对激光脉冲撞击之间的时间间隔。""这为量子物理学带来了许多令人兴奋的应用。希望它能帮助我们追踪电子如何在最短的时间内从量子粒子转变为完全正常的粒子。我们已经计划利用它来进一步了解不同粒子之间的纠缠,爱因斯坦称之为'幽灵',"Dörner说。就像科学界经常做的那样,对早已确立的理论进行一次又一次的测试在这里也是值得的。编译自/scitechdaily...PC版:https://www.cnbeta.com.tw/articles/soft/1426501.htm手机版:https://m.cnbeta.com.tw/view/1426501.htm

相关推荐

封面图片

MIT研究人员开发出微型光子芯片 实现超快激光技术微型化

MIT研究人员开发出微型光子芯片实现超快激光技术微型化激光在日常生活中已相对普遍,但除了在狂欢派对上提供灯光表演和扫描杂货上的条形码外,激光还有很多用途。激光在电信、计算以及生物、化学和物理研究领域也具有重要意义。在后一种应用中,能够发射超短脉冲的激光器尤其有用,这种激光器的脉冲为万亿分之一秒(1皮秒)或更短。利用在如此小的时间尺度上工作的激光,研究人员可以研究极快发生的物理和化学现象--例如,化学反应中分子键的生成或断裂,或者材料内部电子的运动。这些超短脉冲还广泛用于成像应用,因为它们的峰值强度极大,但平均功率较低,因此可以避免加热甚至烧毁生物组织等样本。在《科学》杂志上发表的一篇论文中,加州理工学院电子工程与应用物理学助理教授阿里雷扎-马兰迪(AlirezaMarandi)介绍了他的实验室开发的一种在光子芯片上制造这种激光器(称为锁模激光器)的新方法。这种激光器使用纳米级元件(纳米是十亿分之一米)制造,可以集成到光基电路中,类似于现代电子产品中的电基集成电路。铌酸锂制成的纳米光子锁模激光器发出一束绿色激光。资料来源:加州理工学院马兰迪说:"我们感兴趣的不仅仅是让锁模激光器更加紧凑。我们很高兴能在纳米光子芯片上制造出性能良好的锁模激光器,并将其与其他元件结合在一起。到那时,我们就能在集成电路中构建一个完整的超快光子系统。这将把目前属于米级实验的超快科学和技术财富带到毫米级芯片上"。超快激光与诺贝尔奖的认可这类超快激光器对研究工作非常重要,今年的诺贝尔物理学奖授予了三位科学家,以表彰他们开发出能产生阿秒脉冲的激光器(一阿秒等于一秒的五十亿分之一)。然而,这种激光器目前极其昂贵和笨重,马兰迪指出,他的研究正在探索在芯片上实现这种时间尺度的方法,这种芯片可以便宜很多,体积也更小,目的是开发出价格合理、可部署的超快光子技术。他说:"这些阿秒级实验几乎都是用超快锁模激光器完成的。其中一些实验的成本可能高达1000万美元,而其中很大一部分就是锁模激光器的成本。我们很高兴能考虑如何在纳米光子学中复制这些实验和功能。"马兰迪实验室开发的纳米光子锁模激光器的核心是铌酸锂,这是一种具有独特光学和电学特性的合成盐,在这种情况下,可以通过应用外部射频电信号来控制和塑造激光脉冲。这种方法被称为腔内相位调制主动锁模。"大约50年前,研究人员在桌面实验中使用腔内相位调制来制造锁模激光器,并认为与其他技术相比,这种方法并不十分合适,"论文第一作者、前马兰迪实验室博士后郭秋实(音译)说。"但我们发现它非常适合我们的集成平台"。"除了体积小巧之外,我们的激光器还表现出一系列引人入胜的特性。例如,我们可以在很宽的范围内精确调节输出脉冲的重复频率。我们可以利用这一点来开发芯片级稳定频率梳状源,这对于频率计量和精密传感来说至关重要,"现任纽约城市大学高级科学研究中心助理教授的郭补充道。未来目标和研究影响马兰迪说,他的目标是继续改进这项技术,使其能够在更短的时间尺度和更高的峰值功率下运行,目标是达到50飞秒(飞秒是十万亿分之一秒),这将是他目前设备的100倍改进,目前设备产生的脉冲长度为4.8皮秒。介绍这项研究的论文题为"纳米光子铌酸锂中的超快锁模激光器",发表在11月9日的《科学》杂志上。...PC版:https://www.cnbeta.com.tw/articles/soft/1398911.htm手机版:https://m.cnbeta.com.tw/view/1398911.htm

封面图片

研究人员利用光声成像技术实现先进的神经可视化

研究人员利用光声成像技术实现先进的神经可视化因此,研究人员一直在努力开发医学成像技术,以降低神经损伤的风险。例如,超声波和磁共振成像(MRI)可以帮助外科医生在手术过程中准确定位神经的位置。然而,要在超声波图像中将神经与周围组织区分开来具有挑战性,而核磁共振成像则既昂贵又耗时。约翰霍普金斯大学的研究人员强调了多谱段光声成像在预防侵入性医疗程序中的神经损伤方面的潜力,并确定了最佳神经可视化的关键波长。首次活体记录猪尺神经(左)和正中神经(右)的光声学图像。用1725nm的光照射神经,并将其叠加在共聚焦超声波图像上。图中还显示了神经和周围琼脂糖感兴趣区(ROI)的轮廓。资料来源:M.Graham等人,doi10.1117/1.JBO.28.9.097001光声成像的前景在这方面有一种前景广阔的替代方法,即多光谱光声成像。作为一种非侵入性技术,光声成像结合了光波和声波,可生成人体组织和结构的详细图像。从本质上讲,首先用脉冲光照射目标区域,使其微微发热。这反过来又会导致组织膨胀,发出超声波,从而被超声波探测器捕捉到。约翰霍普金斯大学的一个研究小组最近进行了一项研究,他们在研究中彻底描述了神经组织在整个近红外(NIR)光谱范围内的吸收和光声特征。他们的研究成果于9月4日发表在《生物医学光学杂志》(JournalofBiomedicalOptics)上,由约翰-霍普金斯大学JohnC.Malone副教授兼PULSE实验室主任MuyinatuA.LedijuBell博士领导。他们研究的主要目标之一是确定在光声图像中识别神经组织的理想波长。研究人员假设,位于近红外-III光学窗口内的1630-1850纳米波长将是神经可视化的最佳波长范围,因为神经元髓鞘中的脂质在此范围内有一个特征吸收峰。为了验证这一假设,他们对外周神经样本进行了详细的光学吸收测量。他们在1210纳米波长处观察到一个吸收峰,属于近红外-II波段。然而,这种吸收峰也存在于其他类型的脂质中。与此相反,当从吸收光谱中减去水的贡献时,神经组织在1725纳米的近红外-III范围内显示出一个独特的峰值。实际测试和影响此外,研究人员还使用定制的成像装置对活体猪的外周神经进行了光声测量。这些实验进一步证实了这一假设:利用近红外-III波段的峰值可以有效地区分富含脂质的神经组织和其他类型的组织以及含水或缺脂的材料。贝尔对研究结果感到满意,他说:"我们的工作是首次利用宽波长光谱表征新鲜猪神经样本的光学吸光度光谱,也是首次利用近红外-III窗口的多光谱光声成像技术展示健康和再生猪神经的活体可视化"。这些发现可以激励科学家进一步探索光声成像的潜力。此外,神经组织光吸收曲线的表征有助于在使用其他光学成像模式时改进神经检测和分割技术。"我们的研究结果凸显了多光谱光声成像作为术中技术的临床前景,可用于确定有髓鞘神经的存在或防止医疗干预过程中的神经损伤,并可能对其他基于光学的技术产生影响。因此,我们的贡献成功地为生物医学光学界奠定了新的科学基础。"...PC版:https://www.cnbeta.com.tw/articles/soft/1382757.htm手机版:https://m.cnbeta.com.tw/view/1382757.htm

封面图片

德国法兰克福首次在斋戒月亮灯

德国法兰克福首次在斋戒月亮灯德国法兰克福星期天(3月10日)为回教斋戒月亮灯。当地媒体说,这在德国尚属首次。法新社报道,一个写着“斋戒月快乐”的大型英文灯饰牌,还有新月、星星和小灯笼灯饰,星期天晚上正式举行亮灯仪式,照亮法兰克福市中心一条餐厅和咖啡馆林立的步行街。当地官员和媒体说,这是德国城市首次在斋戒月以彩色灯饰点亮街道。法兰克福市长埃斯坎达里-格伦伯格称之为一个“美好”的活动,代表“法兰克福全体市民和平共处”。埃斯坎达里-格伦伯格数日前在一份声明中说:“面对危机和战争,这个亮灯仪式代表所有人的希望,有助于加强我们这个多元化城市的社会凝聚力。”法兰克福是德国的金融中心,拥有超过75万人口,约10万个回教徒住在这座城市。据报道,法兰克福为斋戒月亮灯活动花费至少7万5000欧元(约11万新元)。2024年3月11日9:00AM

封面图片

研究人员首次在室温下实现深紫外激光二极管的连续波段放电

研究人员首次在室温下实现深紫外激光二极管的连续波段放电这项研究成果今天(11月24日)发表在期刊《应用物理学通讯》上,由2014年诺贝尔奖得主天野浩领导的研究小组与旭化成公司合作,在日本中部的名古屋大学材料与系统可持续发展研究所(IMaSS)进行。自20世纪60年代推出以来,经过几十年的研究和开发,激光二极管(LD)终于成功实现了商业化,用于波长从红外到蓝紫色的一些应用。这种技术的例子包括使用红外LD的光通信设备和使用蓝紫色LD的蓝光光盘。然而,尽管世界各地的研究小组都在努力,但没有人能够开发出深紫外LD。2007年以后,随着制造氮化铝(AlN)基板的技术的出现,才出现了一个关键的突破,这是一种用于生长紫外发光器件的氮化铝(AlGaN)薄膜的理想材料。科学家们在世界范围内首次展示了深紫外激光二极管在室温下的连续波放电。资料来源:IsseyTakahashi从2017年开始,天野教授的研究小组与提供2英寸AlN基板的旭化成公司合作,开始开发深紫外LD。起初,向设备中充分注入电流过于困难,阻碍了紫外-C激光二极管的进一步发展。但在2019年,该研究小组利用极化诱导的掺杂技术成功地解决了这个问题。他们首次生产出了一种短波长的紫外线-可见光(UV-C)LD,该器件以短脉冲电流运行。然而,这些电流脉冲所需的输入功率为5.2瓦。这对于连续波发光来说太高了,因为功率会导致二极管迅速升温并停止发光。但是现在,来自名古屋大学和旭化成的研究人员已经重塑了设备本身的结构,减少了激光器所需的驱动功率,使其在室温下的工作功率仅为1.1W。早期的设备被发现需要很高的工作功率,因为由于激光条纹处出现的晶体缺陷而无法形成有效的电流路径。但在这项研究中,研究人员发现,强烈的晶体应变产生了这些缺陷。通过巧妙地裁剪激光条纹的侧壁,他们抑制了这些缺陷,实现了有效的电流流向激光二极管的活性区域,并降低了工作功率。名古屋大学的产学合作平台,即未来电子学综合研究中心、变革性电子设施(C-TEFs),使新的紫外激光技术的开发成为可能。在C-TEFs下,来自旭化成等合作伙伴的研究人员可以共享名古屋大学校园内最先进的设施,为他们提供建造可重复的高质量设备所需的人员和工具。研究小组的代表ZhangZiyi在参与项目创建时,正在旭化成公司读二年级。"我想做一些新的事情,"他在接受采访时说。"当时大家都认为深紫外激光二极管是不可能的,但天野教授告诉我,'我们已经做到了蓝色激光,现在是紫外线的时候了'。"这项研究是所有波长范围的半导体激光器的实际应用和发展的一个里程碑。未来,紫外-C激光器可应用于医疗保健、病毒检测、颗粒物测量、气体分析和高清激光处理。"它在消毒技术方面的应用可能是开创性的,"Zhang说。"与目前的LED消毒方法不同,它的时间效率很低,激光可以在短时间内进行大面积的消毒,而且距离很远"。这项技术可能特别有利于需要消毒手术室和自来水的外科医生和护士。成功的结果已在《应用物理学通讯》杂志的两篇论文中报告。...PC版:https://www.cnbeta.com.tw/articles/soft/1333665.htm手机版:https://m.cnbeta.com.tw/view/1333665.htm

封面图片

当地时间12日,德国汉莎航空公司19000名空乘人员开始举行罢工,造成1000余个航班被取消。罢工将持续至13日,预计12万名旅

当地时间12日,德国汉莎航空公司19000名空乘人员开始举行罢工,造成1000余个航班被取消。罢工将持续至13日,预计12万名旅客的出行将受到影响。德国法兰克福是汉莎航空公司的总部所在地,也是欧洲大陆上最重要的交通枢纽。12日,人们在法兰克福机场上的大屏上看到,汉莎航空当天飞往德国国内以及全球各大城市的航班大多被取消,机场值机柜台前也空空荡荡,只有为数不多的旅客在办理改签业务。罢工造成当天约7万名旅客无法自法兰克福乘机出行。

封面图片

研究人员实现用飞秒激光进行石墨烯纳米加工

研究人员实现用飞秒激光进行石墨烯纳米加工石墨烯于2004年被发现,它已经彻底改变了各种科学领域。它拥有高电子迁移率、机械强度和热导率等显著特性。人们投入了大量的时间和精力来探索它作为下一代半导体材料的潜力,催生了基于石墨烯的晶体管、透明电极和传感器等一系列有用部件。但是,为了使这些设备进入实际应用,关键是要有高效的加工技术,可以在微米和纳米尺度上构造石墨烯薄膜。通常,微/纳米尺度的材料加工和设备制造采用纳米光刻技术和聚焦离子束方法。然而,由于需要大规模的设备、冗长的制造时间和复杂的操作,这些都给实验室研究人员带来了长期的挑战。早在一月份,东北大学的研究人员创造了一种技术,可以对厚度为5至50纳米的氮化硅薄片进行微/纳米制造。该方法采用了飞秒激光,它发射出极短的快速光脉冲。事实证明,它能够在没有真空环境的情况下快速、方便地加工薄型材料。(a)激光加工系统的示意图。(b)石墨烯薄膜上32个激光点的形成。(c)经过多点钻孔的石墨烯薄膜的图像。通过将这种方法应用于石墨烯的超薄原子层,同一小组现在已经成功地进行了多点钻孔而不损坏石墨烯薄膜。他们的突破性细节于2023年5月16日在《纳米通讯》杂志上报道。东北大学先进材料多学科研究所的助理教授、该论文的共同作者YuukiUesugi说:"通过对输入能量和激光射击次数的适当控制,我们能够执行精确的加工并创造出直径从70纳米--远小于520纳米的激光波长--到超过1毫米的孔。"通过扫描透射电子显微镜观察到的激光加工的石墨烯薄膜的图像。黑色区域表示打孔。白色物体表示表面污染物。资料来源:YuukiUesugi等人。在通过高性能电子显微镜仔细检查用低能量激光脉冲照射的区域时,上杉和他的同事发现,石墨烯上的污染物也已被清除。进一步的放大观察发现了直径小于10纳米的纳米孔和原子级缺陷,在石墨烯的晶体结构中缺少几个碳原子。石墨烯中的原子缺陷既是有害的也是有利的,这取决于应用。虽然缺陷有时会降低某些特性,但它们也会引入新的功能或增强特定的特性。通过高倍率透射电子显微镜获得的图像。红色区域表示纳米孔。蓝色区域表示污染物。箭头所指的位置存在原子缺陷。"观察到纳米孔和缺陷的密度随着激光射击的能量和数量成比例增加的趋势,使我们得出结论,纳米孔和缺陷的形成可以通过使用飞秒激光照射来操纵,"Uesugi补充说。"通过在石墨烯中形成纳米孔和原子级缺陷,不仅可以控制导电性,还可以控制量子级特性,如自旋和谷值。此外,这项研究中发现的通过飞秒激光照射去除污染物的方法可以开发出一种非破坏性和清洁地清洗高纯度石墨烯的新方法。"展望未来,该团队旨在建立一种使用激光的清洗技术,并对如何进行原子缺陷的形成进行详细调查。进一步的突破将对从量子材料研究到生物传感器开发等领域产生巨大影响。...PC版:https://www.cnbeta.com.tw/articles/soft/1363301.htm手机版:https://m.cnbeta.com.tw/view/1363301.htm

🔍 发送关键词来寻找群组、频道或视频。

启动SOSO机器人