韩国研究人员发现液晶突破性的定向运动现象

韩国研究人员发现液晶突破性的定向运动现象他们的研究结果表明,物体只需周期性地改变其在液晶介质中的尺寸,就能实现定向运动。这一创新性发现为众多研究领域带来了巨大的潜力,并有可能在未来开发出微型机器人。研究小组在研究中观察到,液晶中的气泡可以通过周期性地改变大小向一个方向移动,这与其他介质中气泡通常对称增长或收缩的现象截然不同。通过向液晶中引入与头发丝大小相当的气泡并操纵压力,研究人员得以展示这一非凡现象。左起:Sung-JoKim、JoonwooJeong教授和EujinUm研究教授。资料来源:UNIST这种现象的关键在于在气泡旁边的液晶结构中产生了相位缺陷。这些缺陷破坏了气泡的对称性,使气泡尽管形状对称,却受到单向力的作用。随着气泡大小的波动,推动和拉动周围的液晶,气泡被推向一个一致的方向,打破了传统的物理定律。该研究的第一作者Sung-JoKim说:"这一突破性的观察结果展示了对称物体通过对称运动表现出定向运动的能力,这是以前从未见过的现象。"他进一步强调了这一原理对液晶以外的各种复杂流体的潜在适用性。分散在NLC中的脉动气泡。资料来源:联合国软件技术研究所Jeong教授评论说:"这一引人入胜的结果强调了时间和空间对称性破缺在驱动微观层面运动方面的重要意义。此外,它还为推进微观机器人的开发研究带来了希望"。编译来源:ScitechDaily...PC版:https://www.cnbeta.com.tw/articles/soft/1428027.htm手机版:https://m.cnbeta.com.tw/view/1428027.htm

相关推荐

封面图片

研究人员破解了500多年前达芬奇提出的气泡螺旋上升轨迹之谜

研究人员破解了500多年前达芬奇提出的气泡螺旋上升轨迹之谜五个世纪前,达芬奇观察到气泡以"之"字形或螺旋形运动的方式偏离直线路径。然而,直到现在,这种周期性运动的原因仍然是未知的。达芬奇在五个世纪前观察到,气泡如果足够大,会周期性地偏离直线运动的人字形或螺旋形。然而,从来没有发现对这一现象的定量描述或解释这一周期性运动的物理机制。莱昂纳多的草图显示了一个上升的气泡的螺旋运动(来自他的手稿,称为莱斯特法典)。资料来源:塞维利亚大学这篇新论文的作者开发了一种数值离散化技术,以精确描述气泡的空气-水界面,这使他们能够模拟其运动并探索其稳定性。他们的模拟结果与非稳态气泡运动的高精度测量结果密切相关,并显示当气泡的球面半径超过0.926毫米时,气泡在水中会偏离直线轨迹,这一结果与90年代用超纯水获得的实验值相差不到2%。研究人员提出了一种气泡轨迹不稳定的机制,即气泡的周期性倾斜会改变其曲率,从而影响上升速度并导致气泡轨迹的摇摆,使曲率增加的那一侧气泡向上倾斜。然后,随着流体运动速度的加快,高曲率表面周围的流体压力下降,压力的不平衡使气泡回到原来的位置,重新开始周期性循环。...PC版:https://www.cnbeta.com.tw/articles/soft/1342495.htm手机版:https://m.cnbeta.com.tw/view/1342495.htm

封面图片

研究人员找到预测火山爆发的突破性新方法

研究人员找到预测火山爆发的突破性新方法联合国专家组的一个小组确定了三个易于测量的参数,这些参数有助于深入了解火山的结构特征,标志着在风险评估和预防措施领域取得了进展。火山爆发的风险是什么?为了评估火山爆发的可能性,研究人员需要深入了解火山的内部结构。然而,获取这些重要数据可能是一项长期工作,需要进行多年的实地研究、分析和持续监测。这就是为什么目前只有一小部分活火山--大约30%的活火山得到了很好的记录。日内瓦大学(UNIGE)的一个团队开发了一种快速获取宝贵信息的方法。他们的方法侧重于三个关键变量:火山的海拔高度、将岩浆室与地表隔开的岩层深度以及岩浆的平均化学成分。这些发现发表在《地质学》(Geology)杂志上,为识别构成最大风险的火山提供了新的途径。地球上有大约1500座活火山,但我们只掌握了其中30%的精确数据。这是因为我们很难观测到它们的"燃料"--著名的岩浆,而岩浆中蕴含着丰富的信息。这种熔岩最初产生于地幔60千米到150千米的深处,而人类最深的钻孔一般只能钻到10千米(6.2英里)左右的深度,因此无法进行直接观测。火山下方地壳深处岩浆的生成速度决定了未来火山爆发的规模和频率。圣基茨和尼维斯岛州的利亚穆伊加火山。它是卢卡-卡里基及其团队研究的主要火山之一。图片来源:奥利弗-希金斯由于有8亿多人居住在活火山附近,数据的缺乏是一个危险。因此,在许多地区,没有任何依据可用于评估特定火山所带来的风险,以及在疑似火山爆发时应采取的保护措施(例如疏散范围)的范围。三个关键参数科学家们经常使用地球化学和地球物理分析方法来监测火山,但要深入了解一座特定火山的工作原理可能需要几十年的时间。多亏了联合国大学理学院地球科学系全职教授卢卡-卡里基(LucaCaricchi)团队的最新研究成果,现在可以更快地获得有价值的信息。这种方法使用三个易于测量的参数:火山高度、火山"储层"与地表之间的岩石厚度,以及火山爆发过程中释放的岩浆的化学成分。前者可通过卫星测定,后者可通过地球物理学和/或对火山岩中矿物(晶体)的化学分析测定,而后者则可通过实地直接取样测定。快照通过分析小安的列斯群岛火山弧的现有数据,联合国大学的研究小组强调了火山高度与岩浆产生速度之间的相关性。"最高的火山在其生命周期内平均喷发量最大。卢卡-卡里基研究小组的前博士生、该研究的第一作者奥利弗-希金斯(OliverHiggins)解释说。科学家们还发现,火山下方的地壳越薄,岩浆库越接近地表,火山的热成熟度就越高。"当岩浆从深处上升时,往往会冷却凝固,从而停止上升。但当岩浆供应量较大时,岩浆会保持温度,积聚在储层中,为未来的喷发提供燃料,并'侵蚀'地壳",该研究的第二位也是最后一位作者卢卡-卡里基(LucaCaricchi)解释说。确定风险最大的火山最后,研究人员发现,已经喷发的岩浆的平均化学成分是其爆炸性的一个指标。"例如,二氧化硅含量高,表明火山由大量岩浆供给。在这种情况下,该火山发生大规模爆炸性喷发的风险更大",研究人员解释说。"综上所述,UNIGE团队确定的三个参数可以为火山的内部结构提供一个"快照"。...PC版:https://www.cnbeta.com.tw/articles/soft/1381129.htm手机版:https://m.cnbeta.com.tw/view/1381129.htm

封面图片

研究人员让电磁波在突破性实验中相互作用

研究人员让电磁波在突破性实验中相互作用纽约市立大学ASRC的研究人员发现了一种操纵光子的方法,从而可以利用量身定制的超材料使光子发生碰撞和相互作用。这一突破将为电信、光学计算和能源应用带来重大进展。(光子在时间界面上碰撞的示意图)资料来源:纽约市立大学研究生中心高级科学研究中心AnnaUmana突破及其基础这一突破发生在纽约市立大学研究生中心杰出教授、爱因斯坦物理学教授、纽约市立大学ASRC光子学计划创始主任AndreaAlù的实验室里。它建立在最近另一项演示电磁波时间反射的实验基础之上。"我们的工作建立在一系列实验的基础上,这些实验显示了我们如何能够创造出具有独特性能的超材料,这些性能来自于其电磁特性的突然时间变化。这些变化使我们能够以自然界中从未见过的方式操纵波的传播,"Alù解释说。"这项最新工作表明,我们可以利用量身定制的超材料(称为时间界面)中的突然时间变化,使波像大质量物体一样发生碰撞。我们还能控制波在碰撞过程中是交换能量、获得能量还是失去能量。"波与光子的碰撞通常情况下,当两个电磁波相交时,它们会直接穿过对方,而不会发生相互作用。这与两个大质量物体(如两个球)相互碰撞时发生的情况截然不同。在后一种情况下,粒子发生碰撞,它们的机械特征决定了能量在碰撞中是保留、损失还是增加。例如,当两个台球相撞时,系统中的总能量是守恒的,而当两个橡胶球相撞时,它们通常会在碰撞中损失能量。虽然光子在没有任何相互作用的情况下会相互穿过,但通过触发时间界面,科学家们能够展示出强烈的光子-光子相互作用,并控制碰撞的性质。研究小组的工作灵感来自于这样一种猜测,即是否有可能通过向海啸或地震波投掷另一种类似的波来抵消它,从而消除不想要的机械波(如海啸或地震波)。"虽然这种结果在传统的波物理学中是不可能实现的,但我们知道原则上时空超材料是可以实现的,"阿卢实验室的博士后、该研究的主要作者埃马努埃莱-加里菲(EmanueleGaliffi)说。"我们的实验让我们能够在电磁波中证明这一概念。"应用与未来工作科学家们还提出并演示了将他们的概念应用于通过相互碰撞来塑造电磁脉冲的方法。阿卢实验室的博士后研究员、论文的共同第一作者徐根玉阐述道:"这项技术允许我们使用额外的信号作为模具,来雕刻我们感兴趣的脉冲结构。我们已经在无线电频率上证明了这一点,现在我们正努力在更高频率上实现这种雕刻能力。"该团队努力开发的方法可以决定传播的电磁波如何相互作用和相互塑造,这将为无线通信、成像、计算和能量收集技术等领域的进步带来益处。...PC版:https://www.cnbeta.com.tw/articles/soft/1377529.htm手机版:https://m.cnbeta.com.tw/view/1377529.htm

封面图片

MIT研究人员发现由光而不是热引起的蒸发现象

MIT研究人员发现由光而不是热引起的蒸发现象换句话说,虽然温度的波动会产生蒸发现象,但仅凭光束的力量,水也一直在因此变成水蒸气。科学家们将这一过程称为"光分子效应",源自爱因斯坦在1905年对光电效应的解释。普渡大学机械工程学教授阮秀林说:"由光而不是热引起蒸发的发现为光与水的相互作用提供了新的颠覆性知识。"阮秀林没有参与麻省理工学院的研究,该研究发表在《美国国家科学院院刊》(PNAS)上。他补充说:"这可以帮助我们对阳光如何与云、雾、海洋和其他自然水体相互作用以影响天气和气候有新的认识。具有重大的潜在实际应用价值,例如太阳能驱动的高性能海水淡化。这项研究属于罕见的真正革命性的发现,这些发现不会立即被社会广泛接受,而是需要时间,有时甚至是很长时间才能得到证实。"研究人员说,光引起的蒸发和热引起的蒸发之间的区别看似不大,但它不仅会对未来蒸发项目的执行方式产生重大影响,而且还能解释涉及云层的一个长期存在的差异。大约八十年来,对云层吸收阳光的方式进行的测量经常表明,云层吸收的阳光比物理学认为可能吸收的更多。对这些云层产生的光分子效应--它导致了额外的、意想不到的蒸发--可能有助于解决这个难题。研究小组利用实验室设备向水中发射激光,观察光的蒸发效应布莱斯-维克马克由于光基蒸发的发现非常惊人,麻省理工学院的研究人员进行了14次不同的验证实验,所有实验都支持这一发现。在使用激光进行实验的过程中,他们发现,当被称为横向磁偏振的特定偏振光以45°角照射到水面时,蒸发效果最强。绿光的蒸发效果也最强,这让研究小组感到惊讶,因为绿光是使水看起来最透明的颜色,因为它与水的相互作用最小。"手稿中的观察结果指出了一种新的物理机制,它从根本上改变了我们对蒸发动力学的看法,"佐治亚理工学院机械工程副教授ShannonYee说,他也没有参与这项工作。"谁能想到,我们还在学习像水蒸发这样的常识呢?"已经有一些公司与研究人员接触,认为光分子效应可以帮助他们的业务,其中包括一家公司希望将其用于纸厂的纸张干燥,另一家公司则希望利用这一过程蒸发糖浆。虽然这些应用可能是可行的,但研究人员认为,更多的工作将使他们的研究成果成倍受益。研究报告的合著者、麻省理工学院动力工程教授陈刚说:"这种现象应该非常普遍,我们的实验实际上只是一个开始。证明和量化这种效应所需的实验非常耗时。从了解水本身,到扩展到其他材料、其他液体甚至固体,都存在很多变数。"...PC版:https://www.cnbeta.com.tw/articles/soft/1428634.htm手机版:https://m.cnbeta.com.tw/view/1428634.htm

封面图片

SLAC研究人员正开发新的光激活方法生产突破性生物医学分子

SLAC研究人员正开发新的光激活方法生产突破性生物医学分子研究人员在SLAC的斯坦福同步辐射光源(SSRL)上采用了先进的X射线光谱技术,从而能够更深入地探究硝氧化物的化学特性。资料来源:GregStewart/SLAC国家加速器实验室虽然一氧化氮(NO)因其显著的生理效应而长期受到研究人员的关注,但其鲜为人知的表亲-次硝酸(HNO)却在很大程度上仍未得到开发。这项最近发表在《美国化学学会杂志》(JournaloftheAmericanChemicalSociety)上的研究,是SLAC的线性相干光源(LCLS)X射线激光器和斯坦福同步辐射光源(SSRL)团队共同努力的成果。次硝酸具有许多与一氧化氮相同的生理效应,如抵抗病菌、防止血栓、放松和扩张血管等,同时还具有额外的治疗特性,如治疗心力衰竭的功效,以及更强的抗氧化活性和伤口愈合能力。然而,它并不是一种化学寿命足够长的物质,因此能够定向输送它的方法是未来生物医学应用的关键。为了应对这一挑战,研究小组重点研究了一种独特的分子--铁-亚硝基复合物(Fe-NO)。他们的研究旨在了解Fe-NO键在光照射之前和之后的复杂性质,以了解亚硝基生成的复杂性。他们发现,将这种分子暴露在光学光线下,可以破坏其键,从而可能产生亚硝基氧化物。"虽然这项研究是基础性的,但我们希望其他研究人员能够利用我们从这种分子中学到的知识,通过优化类似的医药分子来构建治疗技术,"SLAC科学家和合作者利兰-吉(LelandGee)说。"我们的想法是获得一种能在体内需要的地方释放出HNO的分子,并对其进行照射,使其释放出治疗特性"。研究小组面临的挑战之一是铁-NO复合物中铁原子和亚硝基配体(一种与中心金属原子或离子结合的分子或离子)之间的电子分布不明确,这限制了使用传统方法可以获得的信息量。科学家们在SSRL采用了先进的X射线光谱技术,使他们能够更深入地探究分子及其键的化学性质,从而更全面地了解Fe-NO系统及其对光的反应。后续工作中,科学家们计划进一步探索断键过程的复杂性,以及如何优化硝氧化物或一氧化氮的生产。他们还在考虑用其他金属代替铁,以更好地了解光生成过程。"在这项研究中,我们了解了光照后的起始分子及其最终产物,"Gee说。"在实际断键和从分子中释放出硝基氧化物的过程中,仍有许多细微差别需要探索。在这个过程中,是哪一步决定了一氧化氮的释放?我们怎样才能从结构上调整系统,使其产生任一分子?"这项工作有助于了解在LCLS的未来实验中需要监测哪些特性,科学家们将能够实时拍摄一氧化氮光生成过程的快照。Gee说:"我们获得的信息凸显了这种方法的威力,并为今后在LCLS上对这些分子和类似分子的研究提供了蓝图。"这项研究为医学界和患者带来了希望,他们可能会从未来的应用中受益。"虽然我们离利用这些分子的光来治疗严重的心血管疾病还很遥远,但对这些分子的基本认识为未来的应用研究奠定了坚实的基础,"Gee说。"这可能会带来全新的方法,利用光来治疗心血管疾病、微生物感染、癌症和其他健康问题"。...PC版:https://www.cnbeta.com.tw/articles/soft/1392311.htm手机版:https://m.cnbeta.com.tw/view/1392311.htm

封面图片

乌克兰研究人员参与取得聚变发电成果 微波加热等离子体迎来突破性进展

乌克兰研究人员参与取得聚变发电成果微波加热等离子体迎来突破性进展HeliotronJ装置的结构。资料来源:京都大学/HeliotronJ小组质体必须保持在正确的密度、温度和时间,才能发生核聚变。包括马克斯-普朗克等离子体物理研究所在内的研究团队已经确定了等离子体生产的三个关键步骤,并利用HeliotronJ设备研究核聚变等离子体放电。他们发现,在不对准磁场的情况下施加2.45GHz微波会产生密集的等离子体,这有可能简化未来的聚变研究。主要作者YuriiVictorovichKovtun,尽管在目前的俄乌战争中被迫撤离哈尔科夫物理技术研究所,但仍继续与京都大学合作,利用微波创造稳定的等离子体。让等离子体恰到好处是利用核聚变所承诺的大量能量的障碍之一。等离子体--离子和电子的汤--必须保持适当的密度、温度和时间,使原子核融合在一起,以达到预期的能量释放。一种配方涉及使用大型的、带有强大磁铁的甜甜圈形状的装置,这些磁铁包含等离子体,同时仔细排列的微波发生器加热原子混合物。物理学聚变能量波的概念聚变能源是一个迷人的、有前途的研究领域,它试图利用为太阳提供动力的相同过程来生产清洁、丰富和几乎无限的能源。现在,京都大学先进能源研究所与哈尔科夫研究所和马克斯-普朗克等离子体物理研究所合作,利用低频率的微波功率,创造出具有聚变适宜密度的等离子体。研究小组已经确定了等离子体生产的三个重要步骤:闪电般的气体分解、初步等离子体生产和稳态等离子体。这项研究正在使用HeliotronJ进行,这是位于京都大学南部宇治校区的先进能源研究所的实验性聚变等离子体设备的最新迭代。小组负责人长崎和信解释说:"最初,我们没有想到在HeliotronJ中会出现这些现象,但惊讶地发现等离子体的形成没有回旋共振。"在几十年的经验基础上,长崎的团队正在探索HeliotronJ中的聚变等离子体放电现象。该小组将2.45GHz的微波功率的强烈爆发注入进料气体。家庭中的微波炉在这个相同的频率下工作,但HeliotronJ的功率大约是10倍,而且集中在几个气体原子上。"出乎意料的是,我们发现在没有对准HeliotronJ的磁场的情况下爆破微波会产生一种放电,将电子从其原子上撕下来,并产生一种特别密集的等离子体,"长崎惊叹道。"我们非常感谢我们的同事能够继续支持这项研究,关于这种利用微波放电产生等离子体的方法的发现可能会简化未来的聚变研究。"...PC版:https://www.cnbeta.com.tw/articles/soft/1352969.htm手机版:https://m.cnbeta.com.tw/view/1352969.htm

🔍 发送关键词来寻找群组、频道或视频。

启动SOSO机器人