不用化石燃料冶炼钢铁:研究人员利用太阳能打破工业加热1000°C的障碍

不用化石燃料冶炼钢铁:研究人员利用太阳能打破工业加热1000°C的障碍访问:NordVPN立减75%+外加3个月时长另有NordPass密码管理器热捕捉器的主要部件是一个石英圆柱体。在实验中,它的温度达到了1050摄氏度,并在这种高温下发光。图片来源:苏黎世联邦理工学院/埃米利亚诺-卡萨提通讯作者、瑞士苏黎世联邦理工学院的埃米利亚诺-卡萨提(EmilianoCasati)说:"为了应对气候变化,我们需要从总体上实现能源的去碳化。人们往往只把电力当作能源,但事实上,大约一半的能源是以热能的形式使用的。"玻璃、钢铁、水泥和陶瓷是现代文明的核心,是建造从汽车发动机到摩天大楼等一切建筑的基本材料。然而,制造这些材料需要超过1000°C的高温,并严重依赖燃烧化石燃料来获取热量。这些行业的能耗约占全球能耗的25%。研究人员利用太阳能接收器探索了一种清洁能源的替代方法,这种接收器通过成千上万个太阳跟踪镜来集中和制造热量。然而,这种技术很难将太阳能有效地传输到1000°C以上的温度。热捕捉器实验示意图。它由一根石英棒(内部)和一个陶瓷吸收器(外部)组成。太阳辐射从前部进入,热量在后部区域产生。资料来源:CasatiEetal.为了提高太阳能接收器的效率,Casati转而使用石英等半透明材料,这种材料可以捕获阳光--这种现象被称为热捕获效应。研究小组制作了一个热捕获装置,将合成石英棒固定在不透明的硅片上作为能量吸收器。当他们将该装置暴露在相当于136个太阳发出的光的能量通量下时,吸收板的温度达到1050°C(1922°F),而石英棒的另一端则保持在600°C(1112°F)。Casati说:"以前的研究只能证明170°C(338°F)以下的热捕获效应。我们的研究表明,太阳热捕集不仅在低温下有效,而且远高于1000°C。这对于展示其在实际工业应用中的潜力至关重要。"研究小组还利用传热模型模拟了石英在不同条件下的热捕集效率。模型显示,在相同性能的情况下,热捕集可以在较低的浓度下达到目标温度,或者在相同浓度的情况下达到较高的热效率。Casati和他的同事们目前正在优化热捕获效应,并研究这种方法的新应用。到目前为止,他们的研究取得了可喜的成果。通过探索其他材料,如不同的液体和气体,他们能够达到更高的温度。研究小组还注意到,这些半透明材料吸收光或辐射的能力并不局限于太阳辐射。"能源问题是我们社会生存的基石,"Casati说。"太阳能很容易获得,而且技术已经存在。为了真正推动行业采用,我们需要大规模地展示这项技术的经济可行性和优势。"编译来源:ScitechDaily...PC版:https://www.cnbeta.com.tw/articles/soft/1431301.htm手机版:https://m.cnbeta.com.tw/view/1431301.htm

相关推荐

封面图片

纳米颗粒可自我组装 创造革命性的太阳能采集解决方案

纳米颗粒可自我组装创造革命性的太阳能采集解决方案太阳-热能技术作为一种环境友好的能源,有潜力解决化石燃料危机。然而,目前的太阳能采集器在可扩展性和灵活性方面存在局限性。为了解决这些挑战,研究人员设计了一种新的太阳能采集器,具有增强的能量转换能力。新设计的目的是简化制造,降低成本,同时提高性能。在AIP出版的《APL光子学》中,来自哈尔滨大学、浙江大学、长春光机所和新加坡国立大学的研究人员设计了一种具有增强能量转换能力的太阳能采集器。该装置采用了准周期的纳米级图案--意味着它的大部分是交替一致的图案,而剩下的部分包含随机缺陷(不同于纳米制造的结构),但不影响其性能。事实上,放宽对结构周期性的严格要求,大大增加了设备的可扩展性。该制造过程利用了自组装的纳米颗粒,这些颗粒在没有任何外部指令的情况下,根据它们与附近颗粒的相互作用形成有组织的材料结构。该装置收集的热能可以通过热电材料转化为电能。图片显示了该装置的太阳-热转换(左)和太阳能热电采集(右)浙江大学的作者李颖说:"太阳能以电磁波的形式在广泛的频率范围内传输,一个好的太阳能-热能采集器应该能够吸收该波并发热,从而将太阳能转换为热能。这个过程需要很高的吸收率(100%是完美的),而且太阳能收割机还应该抑制其热辐射,以保存热能,这需要低的热辐射率(零意味着没有辐射)。"为了实现这些目标,收割机通常是一个具有周期性纳米光子结构的系统。但是,由于图案的刚性和高制造成本,这些模块的灵活性和可扩展性会受到限制。与以前的策略不同,这种准周期性纳米光子结构是由氧化铁(Fe3O4)纳米颗粒自组装的,而不是繁琐和昂贵的纳米制造。他们的准周期纳米光子结构实现了高吸收率(大于94%),抑制了热发射率(小于0.2),在自然太阳光照下,吸收器具有快速和明显的温度上升(大于80摄氏度)。基于该吸收器,该团队建立了一个灵活的平面太阳能热电采集器,它达到了每平方厘米超过20毫伏的重要维持电压。他们期望它能为每平方米的太阳能辐照提供20个发光二极管的电力。这种策略可以为低功率密度的应用服务,使太阳能采集的工程更加灵活和可扩展。"我们希望我们的准周期性纳米光子结构将激发其他工作,"李说。"这种高度通用的结构和我们的基础研究可以用来探索太阳能采集的上限,如灵活的可扩展的太阳能热电发电机,它可以作为一个辅助的太阳能采集组件,以提高光伏架构的总效率。"...PC版:https://www.cnbeta.com.tw/articles/soft/1345641.htm手机版:https://m.cnbeta.com.tw/view/1345641.htm

封面图片

新材料可大幅提高太阳能电池板的效率

新材料可大幅提高太阳能电池板的效率美国利哈伊大学的一个研究小组创造了一种材料,它可以大大提高太阳能电池板的效率。使用这种材料作为太阳能电池活性层的原型显示出80%的平均光电吸收率、很高的光激发载流子生成率以及前所未有的高达190%的外部量子效率(EQE)--这远远超过了硅基材料的肖克利-奎塞尔理论效率极限,并将光伏量子材料领域推向了新的高度。ChindeuEkuma。资料来源:利哈伊大学物理学教授ChineduEkuma在《科学进展》(ScienceAdvances)杂志上发表了他与利哈伊大学博士生SrihariKastuar合作开发这种材料的论文。先进的材料特性这种材料的效率飞跃主要归功于其独特的"中间带态",即材料电子结构中的特定能级,使其成为太阳能转换的理想选择。这些态的能级在最佳子带间隙内,即材料能有效吸收阳光并产生电荷载流子的能量范围,约为0.78和1.26电子伏特。此外,这种材料在电磁波谱的红外线和可见光区域的高吸收率表现尤为出色。以CuxGeSe/SnS为活性层的薄膜太阳能电池示意图。资料来源:Ekuma实验室/利哈伊大学在传统太阳能电池中,最大EQE为100%,即每吸收一个太阳光光子,就能产生和收集一个电子。然而,过去几年中开发的一些先进材料和配置已证明能够从高能光子中产生和收集一个以上的电子,即EQE超过100%。斯里哈里-卡斯图阿尔,利哈伊大学。资料来源:利哈伊大学虽然这种多重激子生成(MEG)材料尚未广泛商业化,但它们有可能大大提高太阳能发电系统的效率。在Lehigh开发的材料中,中间带态能够捕获传统太阳能电池通过反射和产热等方式损失的光子能量。材料开发与潜力研究人员利用"范德华间隙"(层状二维材料之间的原子级微小间隙)开发出了这种新型材料。这些间隙可以限制分子或离子,材料科学家通常利用它们来插入或"插层"其他元素,以调整材料特性。为了开发新型材料,利哈伊大学的研究人员在硒化锗(GeSe)和硫化锡(SnS)制成的二维材料层之间插入了零价铜原子。Ekuma是计算凝聚态物理方面的专家,在对该系统进行了大量计算机建模并证明其理论前景后,他开发了这一原型作为概念验证。他说:"其快速反应和更高的效率有力地表明了铜掺杂GeSe/SnS作为一种量子材料在先进光伏应用中的使用潜力,为提高太阳能转换效率提供了一条途径。这是开发新一代高效太阳能电池的理想候选材料,将在满足全球能源需求方面发挥至关重要的作用。"虽然将新设计的量子材料整合到当前的太阳能系统中还需要进一步的研究和开发,但埃库马指出,用于制造这些材料的实验技术已经非常先进。随着时间的推移,科学家们已经掌握了将原子、离子和分子精确插入材料的方法。编译自:ScitechDaily...PC版:https://www.cnbeta.com.tw/articles/soft/1427195.htm手机版:https://m.cnbeta.com.tw/view/1427195.htm

封面图片

麻省理工学院研究人员开发出超薄轻量级太阳能电池

麻省理工学院研究人员开发出超薄轻量级太阳能电池它们的重量是传统太阳能电池板的百分之一,每公斤产生的能量是其18倍,并且是由半导体油墨制成的,使用的印刷工艺在未来可以扩展到大面积的制造。由于这些太阳能电池非常薄和轻,它们可以被贴在许多不同的表面上。例如,它们可以被集成到船帆上,以便在海上提供电力,粘附在灾难恢复行动中部署的帐篷和防水布上,或者应用到无人机的机翼上,以扩大其飞行范围。这种轻量级的太阳能技术可以很容易地集成到建筑环境中,而且安装需求很小。"用于评估一种新的太阳能电池技术的指标通常仅限于其电力转换效率和以每瓦美元计算的成本。同样重要的是可整合性--新技术可以被改造的容易程度。轻质太阳能织物能够实现可整合性,为目前的工作提供了动力。我们努力加快太阳能的采用,因为目前迫切需要部署新的无碳能源,"法里博尔兹-马西赫新兴技术主席、有机和纳米结构电子实验室(ONE实验室)负责人、麻省理工学院纳米实验室主任、描述这项工作的新论文的资深作者弗拉基米尔-布洛维奇说。与Bulović一起撰写论文的还有共同主要作者MayuranSaravanapavanantham,他是麻省理工学院电气工程和计算机科学的研究生;以及JeremiahMwaura,他是麻省理工学院电子研究实验室的研究科学家。该研究最近发表在《小方法》杂志上。瘦身后的太阳能电池传统的硅基太阳能电池是脆弱的,因此它们必须被包裹在玻璃中,并被包装在厚重的铝制框架中,这限制了它们的部署地点和方式。六年前,ONE实验室团队使用一种新兴的薄膜材料生产太阳能电池,其重量非常轻,可以放在肥皂泡上。但是这些超薄的太阳能电池是使用复杂的、基于真空的工艺制造的,这些工艺可能是昂贵的,并且在扩大规模方面具有挑战性。在这项工作中,他们着手开发完全可打印的薄膜太阳能电池,使用基于墨水的材料和可扩展的制造技术。为了生产太阳能电池,他们使用了可打印电子油墨形式的纳米材料。在MIT.nano洁净室工作时,他们使用一个槽模涂布机为太阳能电池结构涂上一层电子材料,该涂布机将电子材料层沉积到准备好的、可释放的基底上,基底的厚度只有3微米。使用丝网印刷(一种类似于在丝印T恤上添加图案的技术),将电极沉积在结构上以完成太阳能模块。然后,研究人员可以将厚度约为15微米的印刷模块从塑料衬底上剥离,形成超轻超薄的太阳能设备。但是这种薄而独立的太阳能模块在处理上具有挑战性,很容易撕裂,这将使它们难以部署。为了解决这一挑战,麻省理工学院的团队寻找一种轻质、灵活和高强度的基材,他们可以将太阳能电池粘在上面。他们认为织物是最佳的解决方案,因为它们提供了机械弹性和灵活性,而且重量增加很少。他们找到了一种理想的材料--一种每平方米仅重13克的复合织物,商业上称为迪尼玛面料。这种织物由纤维制成,其强度非常高,曾被用作绳索,将沉没的邮轮"科斯塔-康科迪亚"号从地中海底部吊起。通过添加一层只有几微米厚的紫外线固化胶水,他们将太阳能模块粘在这种织物的薄片上。这就形成了一个超轻的、机械上坚固的太阳能结构。"虽然直接在织物上印刷太阳能电池可能看起来更简单,但这将限制可能的织物或其他接收表面的选择,使其在化学上和热上与制造设备所需的所有加工步骤兼容。Saravanapavanantham解释说:"我们的方法将太阳能电池的制造与最终的集成工艺分离开来"。胜过传统太阳能电池当他们测试该装置时,麻省理工学院的研究人员发现它在独立的情况下每公斤可以产生730瓦的功率,如果部署在高强度的迪尼玛织物上,每公斤可以产生约370瓦的功率,这比传统太阳能电池的每公斤功率高约18倍。"在马萨诸塞州,一个典型的屋顶太阳能装置约为8000瓦特。他说:"为了产生同样的电力,我们的织物光伏电池只需在房子的屋顶上增加大约20公斤(44磅)的重量。"他们还测试了他们设备的耐用性,发现即使在将织物太阳能电池板滚动和展开500多次后,电池仍能保持其最初发电能力的90%以上。虽然他们的太阳能电池比传统的电池要轻得多,也灵活得多,但它们需要被包裹在另一种材料中,以保护它们免受环境影响。用于制造电池的碳基有机材料可以通过与空气中的水分和氧气相互作用而被改变,这可能会使其性能劣化。将这些太阳能电池包裹在沉重的玻璃中,就像传统的硅太阳能电池的标准做法一样,会将目前的进步价值降到最低,因此该团队目前正在开发超薄的包装解决方案,这只会使目前超轻设备的重量增加一小部分。研究人员正在努力去除尽可能多的非太阳能活性材料,同时仍然保留这些超轻和柔性太阳能结构的外形和性能。例如,可以通过印刷可释放的基材来进一步简化制造过程,相当于用来制造我们设备中其他层的过程。这将加速这项技术向市场的转化。...PC版:https://www.cnbeta.com.tw/articles/soft/1340623.htm手机版:https://m.cnbeta.com.tw/view/1340623.htm

封面图片

研究人员利用分子工程提高有机太阳能电池效率

研究人员利用分子工程提高有机太阳能电池效率聚合物太阳能电池以重量轻、灵活性强而著称,是可穿戴设备的理想选择。然而,生产过程中所需的有毒卤化溶剂却阻碍了它们的广泛应用。这些溶剂带来了环境和健康风险,限制了这些太阳能电池的吸引力。遗憾的是,毒性较低的替代溶剂缺乏相同的溶解性,因此需要更高的温度和更长的加工时间。这种低效率进一步阻碍了聚合物太阳能电池的应用。开发出一种无需使用卤化溶剂的方法,可以显著提高有机太阳能电池的效率,使其更适用于可穿戴技术。在最近发表的一篇论文中,研究人员概述了如何利用侧链工程改善聚合物供体和小分子受体之间的分子相互作用,从而减少对卤化加工溶剂的需求。论文最近发表在《纳米研究能源》(NanoResearchEnergy)上。"聚合物供体和小分子受体的混合形态受其分子相互作用的影响很大,而分子相互作用可由供体和受体材料之间的界面能决定。当它们的表面张力值相似时,供体和受体之间的界面能和分子相互作用预计会更有利,"韩国庆尚国立大学教授Yun-HiKim说。"为了增强聚合物供体的亲水性并减少分子脱杂,侧链工程可能是一条可行的途径。"侧链工程的作用侧链工程是指在分子的主链上添加一个称为侧链的化学基团。侧链中的化学基团会影响大分子的性质。研究人员推测,添加基于低聚乙二醇(OEG)的侧链将提高聚合物供体的亲水性,这要归功于侧链中的氧原子。具有亲水性的分子会被水吸引。聚合物太阳能电池的整体性能和聚合物太阳能电池中亲水侧链分子的热稳定性示意图根据整体性能和热稳定性,在制造PSC时,碳氢化合物和亲水性低聚乙二醇(2EG)的混合物比标准溶剂的性能更好。资料来源:清华大学出版社《纳米研究能源》聚合物供体和小分子受体亲水性的不同会影响它们的相互作用。随着聚合物供体亲水性的增加以及它们与小分子受体之间相互作用的改善,可以使用非卤化加工溶剂,而不会影响太阳能电池的性能。事实上,用OEG侧链连接苯并二噻吩聚合物供体制成的聚合物太阳能电池的功率转换效率为17.7%,高于15.6%。提高效率和稳定性为了比较结果,研究人员设计了带有OEG侧链、碳氢化合物侧链或50%碳氢化合物侧链和50%OEG侧链的苯并二噻吩基聚合物供体。Kim说:"这阐明了侧链工程对非卤化溶剂加工聚合物太阳能电池的混合形态和性能的影响。我们的研究结果表明,具有亲水性OEG侧链的聚合物可以提高与小分子受体的混溶性,并在非卤化加工过程中提高聚合物太阳能电池的功率转换效率和器件稳定性。"除了提高功率转换效率外,带有OEG侧链的聚合物太阳能电池还具有更高的热稳定性。热稳定性对于聚合物太阳能电池的规模化至关重要,因此研究人员将其加热到120摄氏度,然后比较功率转换效率。加热120小时后,带有碳氢化合物侧链的聚合物的功率转换效率仅为最初的60%,而且表面出现了不规则现象,而碳氢化合物和OEG的混合物则保持了最初功率转换效率的84%。Kim说:"我们的研究结果可以为设计聚合物供体提供有用的指导,从而利用非卤化溶剂加工生产出高效稳定的聚合物太阳能电池。"参考文献:SoodeokSeo、Jun-YoungPark、JinSuPark、SeungjinLee、Do-YeongChoi、Yun-HiKim和BumjoonJ.Kim于2023年7月24日发表在《纳米研究能源》上的论文:"亲水侧链聚合物供体可通过非卤化溶剂处理实现高效、热稳定的聚合物太阳能电池"。doi:10.26599/nre.2023.9120088编译来源:ScitechDaily...PC版:https://www.cnbeta.com.tw/articles/soft/1403357.htm手机版:https://m.cnbeta.com.tw/view/1403357.htm

封面图片

研究人员利用透辉石-硅串联电池突破30%太阳能转化效率

研究人员利用透辉石-硅串联电池突破30%太阳能转化效率研究人员在两项不同的研究中开发出了制造功率转换效率超过30%的过氧化物硅串联太阳能电池的方法,突破了硅基光伏技术的传统极限。其中一项研究通过使用膦酸添加剂优化硅基上的包晶石沉积来提高效率,另一项研究则使用离子液体来改善电荷提取,结果效率分别达到31.2%和32.5%。提高太阳能电池效率的一种方法是优化阳光光谱,以便将其转化为能量。这可以通过将两种或两种以上相互连接的光活性材料堆叠成一个单一装置来实现,从而提高太阳能的收集效率。将过氧化物太阳能电池和硅太阳能电池组合成串联装置,可为实现高性能光伏发电提供一条前景广阔的途径。研究人员通过两项不同的研究,介绍了开发PCE超过30%的透辉石-硅串联太阳能电池的不同策略。StefaanDeWolf和ErkanAydin在一篇相关的《视角》中写道:"突破这一阈值为高性能、低成本的光伏产品进入市场提供了信心。"在一项研究中,XinYuChin及其同事表明,在以微米金字塔为特征的硅底电池(行业标准配置)上均匀沉积包晶顶部电池可促进串联太阳能电池产生高光电流。Chin等人的研究表明,在电池的加工过程中使用膦酸添加剂不仅能改善包晶石的结晶过程,还有助于减少重组损耗。在概念验证中,作者制造了一个活性面积为1.17平方厘米的装置,其认证PCE为31.2%。SilviaMariotti及其同事采用了另一种方法,他们的研究表明,使用离子液体(碘化哌嗪)可以通过产生正偶极子改善带排列,并增强三卤化物包晶和电子传输层界面的电荷提取。通过这种改良,Mariotti等人开发出了一种包晶石-硅串联太阳能电池,其开路电压高达2.0伏,经认证的PCE高达32.5%。...PC版:https://www.cnbeta.com.tw/articles/soft/1380351.htm手机版:https://m.cnbeta.com.tw/view/1380351.htm

封面图片

突破极限:串联太阳能电池转化效率超过20%

突破极限:串联太阳能电池转化效率超过20%这项研究发表在2024年3月4日出版的《能源材料与器件》杂志上。光伏技术是一种利用太阳光并将其转化为电能的技术,因其提供清洁的可再生能源而广受欢迎。科学家们不断努力提高太阳能电池的功率转换效率,即效率的衡量标准。传统单结太阳能电池的功率转换效率已超过20%。要使单结太阳能电池的功率转换效率达到肖克利-奎塞尔极限以上,需要更高的成本。然而,通过制造串联太阳能电池,可以克服单结太阳能电池的肖克利-奎塞尔极限。利用串联太阳能电池,研究人员可以通过将太阳能电池材料堆叠在一起获得更高的能源效率。研究小组利用一种名为硒化锑的半导体,致力于制造串联太阳能电池。过去对硒化锑的研究主要集中在单结太阳能电池的应用上。但研究小组知道,从带隙的角度来看,这种半导体可能被证明是串联太阳能电池的合适底部电池材料。"硒化锑是一种适用于串联太阳能电池的底部电池材料。然而,由于使用硒化锑作为底部电池的串联太阳能电池的报道很少,因此人们很少关注它的应用。"中国科学技术大学材料科学与工程学院教授陈涛说:"我们用它作为底部电池组装了一个具有高转换效率的串联太阳能电池,证明了这种材料的潜力。与使用单层半导体材料的单结太阳能电池相比,串联太阳能电池吸收阳光的能力更强。串联太阳能电池能将更多的太阳光转化为电能,因此比单结太阳能电池更节能。"演示概念验证串联太阳能电池,该电池由硒化锑和宽带隙过磷酸钙作为底部和顶部子电池吸收材料组成。通过优化顶部电池的透明电极和底部电池的制备工艺,该装置实现了超过20%的功率转换效率。来源:《能源材料与器件》,清华大学出版社研究小组制作了具有透明导电电极的过氧化物/硒化锑串联太阳能电池,以优化光谱响应。他们通过调整顶部电池透明电极层的厚度,获得了超过17%的高效率。他们通过引入双电子传输层,优化了硒化锑底部电池,实现了7.58%的功率转换效率。当他们用机械方法将顶部和底部电池组装成四端串联太阳能电池时,功率转换效率超过了20.58%,高于独立子电池的功率转换效率。他们的串联太阳能电池具有出色的稳定性和无毒成分。陈说:"这项工作提供了一种新的串联器件结构,并证明硒化锑是一种很有前景的吸收材料,可用于串联太阳能电池的底部电池应用。"展望未来,研究小组希望努力开发集成度更高的双端串联太阳能电池,并进一步提高器件性能。"硒化锑的高稳定性为制备两端串联太阳能电池提供了极大的便利,这意味着它在与多种不同类型的顶层电池材料搭配时可能会取得良好的效果。"编译来源:ScitechDaily...PC版:https://www.cnbeta.com.tw/articles/soft/1433485.htm手机版:https://m.cnbeta.com.tw/view/1433485.htm

🔍 发送关键词来寻找群组、频道或视频。

启动SOSO机器人