老基因,新花招:鳉鱼的悬浮生命科学

老基因,新花招:鳉鱼的悬浮生命科学该研究结果发表在5月30日的《细胞》(Cell)杂志上,研究结果表明,鳉鱼在不到1800万年前通过共用起源于4.73亿年前的古老基因,发展出了休眠的能力。对比分析进一步证明,包括家鼠在内的其他动物在休眠期也有类似的基因表达模式。资深作者、斯坦福大学分子生物学家安妮-布鲁内说:"整个程序就像白天和黑夜--有正常状态下的生命,也有休眠状态下的生命。"一对鳉鱼。图片来源:RogelioBarajas和XiaoaiZhao鳉鱼的快速成熟和繁殖弗氏假鳃鳉比其他脊椎动物成熟得更快,即使在人工饲养条件下,成鱼的寿命也只有6个月左右。在它们的水上家园消失之前,这些鱼会迅速繁殖,但它们的胚胎会留在干泥中,准备来年降雨时孵化。胚胎停育也会发生在其他脊椎动物身上,包括鱼类、爬行动物和一些哺乳动物,但鳉鱼的停育非常极端,因为它持续的时间非常长(平均为8个月,实验室中长达2年),而且鳉鱼胚胎进入停育期的时间比其他动物要晚得多。加州大学旧金山分校的第一作者帕拉姆-普里亚-辛格(ParamPriyaSingh)说:"这大致处于发育的中期,许多器官在这一阶段已经形成--它们有正在发育的大脑和心脏,心脏在休眠期停止跳动,然后又重新开始跳动。据我们所知,鳉鱼是唯一能在发育后期如此晚期休眠的脊椎动物。"雄性鳉鱼。图片来源:RogelioBarajas和XiaoaiZhao休眠期的详细基因分析为了了解休眠进化,研究小组首先确定了弗氏假鳃鳉(Nothobranchiusfurzeri)在不同发育阶段的基因表达特征。他们重点研究了被称为"旁系亲属"的基因复制拷贝,因为基因复制是新基因起源和特化的主要机制之一。总的来说,研究人员发现了6247对旁系亲属在休眠期表现出特化的基因表达模式。令人惊讶的是,据他们估计,大多数休眠期特化基因都是"非常古老"的旁系亲属,起源于4.73亿年前。布鲁内特说:"尽管休眠进化的时间相对较短,但专门用于休眠的基因却非常古老。我们发现,鳉鱼中大多数专门用于休眠的基因都是非常古老的旁系亲属,这意味着它们在所有脊椎动物的共同祖先中都有复制。"物种间的比较分析由于弗氏假鳃鳉、南美鳉(Austrofunduluslimnaeus)(也会出现休眠)和两种不会出现休眠的鳉鱼:五线旗鳉(Aphyosemionstriatum)和琴尾旗鳉(Aphyosemionaustral)的胚胎基因表达进行了比较。他们发现弗氏假鳃鳉和南美鳉的基因表达模式有明显的重叠,这两种鱼的停歇进化是相互独立的,但在两种非停歇物种中却没有发现。同样,研究人员还发现了小家鼠(Musmusculus)胚胎在休眠期基因表达模式的显著相关性,并表明小鼠的休眠期特化基因也有非常古老的起源。辛格说:"这表明,在远亲物种之间,使停歇得以实现的相同机制被反复采用,以实现停歇的进化。"接下来,研究人员探索了这些休眠期特化基因在鳉鱼体内的调控方式。他们发现了几种控制休眠期基因表达模式改变的关键转录因子,包括REST和FOXO3,已知这两种转录因子在哺乳动物冬眠(一种不同的休眠形式)期间也会表达。值得注意的是,这些调控基因中有几个涉及脂质代谢,而脂质代谢在休眠期具有独特的特征。"休眠的关键因素之一是这种特殊的脂质代谢,"布鲁内特说。"在休眠期,它们的甘油三酯和长链脂肪酸含量似乎要高得多,这是一种储存形式,也可能有助于长期保护生物体膜。"停滞期研究的未来方向研究小组计划继续研究不同物种如何调节休眠,并深入挖掘脂质代谢在休眠和其他类型的悬浮状态中的作用。辛格说:"这是一种非常复杂的状态,我认为我们只是触及了表面。我们想更深入地研究休眠期如何调节脂质代谢的具体方面,我们也有兴趣研究特定细胞类型在休眠期的作用。"编译来源:ScitechDaily...PC版:https://www.cnbeta.com.tw/articles/soft/1434110.htm手机版:https://m.cnbeta.com.tw/view/1434110.htm

相关推荐

封面图片

扳动基因开关:科学家通过改变基因表达将鸡爪的鳞片转化为羽毛

扳动基因开关:科学家通过改变基因表达将鸡爪的鳞片转化为羽毛日内瓦大学的研究人员通过临时修改Sonichedgehog(Shh)基因的表达将鸡的鳞片变成了羽毛,揭示了重大的进化转变可以在基因组没有重大变化的情况下发生。这项研究揭示了造成动物形态广泛多样性的机制。这些基因之一控制着一个信号通路--一个允许在细胞内和细胞间传递信息的通信系统。Shh信号传导参与了不同结构的发育,包括神经管、肢芽和皮肤附属物。日内瓦大学理学院遗传学和进化系教授米歇尔-米林科维奇的实验室对产生脊椎动物皮肤附属物多样性的物理和生物过程感兴趣。特别是,他的研究小组之前已经证明,毛发、羽毛和鳞片是由爬行动物的共同祖先继承下来的同源结构。一个基因(Shh)表达的短暂变化可以产生一连串的发育事件,导致形成羽毛而不是鳞片。鸡胚胎的羽毛被科学家用作了解皮肤附属器官发育的模型系统。虽然已知某些品种的鸡,如'Brahma'和'Sablepoot'品种表现出腿部和脚背有羽毛,但这种特性的遗传决定性并不完全了解。由于负责这种转变的信号通路尚未完全确定,米歇尔-米林科维奇的小组调查了Shh通路的潜在作用。"我们使用了经典的'蛋烛'技术,在这种技术中,一个强大的电筒照亮了蛋壳内部的血管。这使我们能够用一种专门激活Shh途径的分子精确地处理鸡胚,直接注入血液中,"米歇尔-米林科维奇实验室的博士后研究员、该研究的共同作者RoryCooper解释说。两位科学家观察到,这种单一阶段的特定处理足以触发大量幼年羽绒型羽毛的形成,而这些区域通常会被鳞片覆盖。值得注意的是,这些通过实验诱导的羽毛与覆盖身体其他部位的羽毛相当,因为它们是可以再生的,随后会被成年羽毛自主取代。在与注射了"对照"溶液(没有活性分子)的胚胎进行比较后,RNA测序分析显示,注射分子后,Shh途径被立即和持续地激活。这证实了Shh途径的激活是鳞片转化为羽毛的基础。''我们的结果表明,进化的飞跃--从鳞片到羽毛--不需要基因组组成或表达上的巨大变化。"米歇尔-米林科维奇说:"相反,一个基因(Shh)的表达的短暂变化可以产生一连串的发育事件,从而形成羽毛而不是鳞片。因此,这项最初专注于研究鳞片和羽毛的发展的研究,对于理解产生自然界中观察到的动物形式的巨大多样性的进化机制具有重要意义。"...PC版:https://www.cnbeta.com.tw/articles/soft/1360643.htm手机版:https://m.cnbeta.com.tw/view/1360643.htm

封面图片

科学家揭开了多样化动物生命周期的秘密

科学家揭开了多样化动物生命周期的秘密伦敦大学玛丽皇后学院研究人员用于进行基因组测序的蠕虫然而,研究人员对幼体存在的原因以及它们如何起源的理解仍然是有限的。更重要的是,解决这一问题的大规模比较研究以前没有使用基于动物遗传信息--基因组--测序的现代技术,也没有发现生物体在生长过程中如何使用这些信息。直到现在。在由伦敦大学玛丽皇后学院(QMUL)的一个团队领导的一项研究中,研究人员首次发现了可能解释胚胎如何形成幼体或成年的缩影的机制,该研究发表在著名杂志《自然》上。在他们的论文中,他们证明了参与胚胎发育的基本基因的激活时间--受精卵转变为生物体与幼体阶段的存在或不存在有关,也与幼体是以周围环境为食还是依靠母亲沉积在卵中的养料有关。弗朗西斯科-M-马丁-萨莫拉,玛丽女王学院的博士生和该研究的第一作者之一,说。"观察到进化如何塑造了动物胚胎的"报时"方式,在发育的早期或后期激活重要的基因组令人印象深刻。假设一个幼体阶段对你的生存不再重要。在这种情况下,可能在进化上是有利的,例如,更早地激活形成躯干的基因,而直接发育成一个成年人"。这项新研究使用了最先进的方法来解码三种被称为环形动物的海洋无脊椎蠕虫的遗传信息、活动和调节。他们在一项涉及60多个物种的600多个数据集的大规模研究中,将这些数据集与其他物种的公共数据集结合起来,这些物种被5亿多年的进化所隔开。"伦敦大学学院该研究的主要合作者FerdinandMarlétaz博士说:"只有通过结合实验室产生的实验数据集和系统的计算分析,我们才能揭开这种未被发现的生物学领域。"来自玛丽皇后学院的博士后研究员、该工作的共同第一作者YanLiang博士说。"虽然这些技术已经存在了一些年,但没有团队将它们用于这一目的。我们产生的数据集和我们开发的方法将成为其他研究人员的巨大的强大资源。"玛丽皇后学院有机体生物学高级讲师、这项研究的资深作者ChemaMartín-Durán博士说。"发育生物学在很大程度上侧重于小鼠、苍蝇和其他我们所知道的模型生物体的成熟物种。我们的研究表明,经常被忽视的非模型物种的迷人生物学对于理解动物发育如何工作以及如何进化至关重要。"参与形成躯干的基因--紧随头部并一直到尾部的身体区域,是最重要的。一些物种会形成几乎没有躯干的幼体,被称为"头部幼体",而且可能早在所有有头有尾的动物的祖先中就已经存在。直接发育和直接从胚胎发育中形成小成体,在许多动物群体中,如我们和大多数脊椎动物,会在后来进化,因为形成躯干的基因在胚胎发育的早期被激活,而幼体的特征会逐渐丧失。德国耶拿弗里德里希-席勒大学教授、该团队的合作者AndreasHejnol博士说:"我们希望该领域的其他研究人员将继续研究动物生命周期进化这一令人兴奋的课题,并为我们提出的假设提供进一步的证据。"...PC版:https://www.cnbeta.com.tw/articles/soft/1346945.htm手机版:https://m.cnbeta.com.tw/view/1346945.htm

封面图片

生命的第一步:“点击重启” 启动新胚胎

生命的第一步:“点击重启”启动新胚胎科学家们发现,名为OBOX1-8的基因能激活胚胎自身的基因程序,从而发现了受精卵细胞如何"重置",使新胚胎得以发育。在小鼠身上观察到的这一突破有助于理解胚胎基因组激活的过程,并可能对胚胎干细胞重编程产生影响。"为了让胚胎发育,卵母细胞/卵子必须失去自己的身份,并通过制造新的东西来实现这一目标,"舒尔茨说。"我们现在知道了这种转变是如何发生的第一步"。为了实现重置或唤醒过程,胚胎需要开始将DNA中的基因转录为信使RNA,然后再翻译成蛋白质。第一批转录的基因将激活其他基因,执行程序,使胚胎发育成完整的小鼠(或人类)。直到现在,人们还不知道这些首批主调控基因的身份,这让研究人员困惑了很久。RNA聚合酶II(PolII)是将DNA转录为RNA的酶。但PolII本身是一种哑酶,舒尔茨说,这一过程需要其他基因(称为转录因子)来指导PolII,使其在正确的时间转录"正确的"基因。本世纪初,舒尔茨敏锐地发现,在卵细胞中休眠的母体信使核糖核酸(maternalmessengerRNAs)中就有这些首批转录因子。休眠的母体信使RNA是卵细胞特有的,因为新合成的信使RNA不会像体细胞那样被翻译。当卵母细胞成熟成为卵子时,这些休眠的母体信使RNA会被翻译成蛋白质,然后执行其功能。舒尔茨意识到,启动子代基因组激活的信息将来自母体的休眠信使核糖核酸,它将编码一个主转录因子。OBOX1-8被确定为候选因子舒尔茨的实验室与宾夕法尼亚大学的保拉-斯坦因(PaulaStein,舒尔茨实验室的资深成员,现就职于美国国家环境健康科学研究所)合作,确定了一个名为OBOX的庞大基因家族可能是候选基因。该家族由8个基因(OBOX1-8)组成。根据它们在早期发育过程中的表达谱,OBOX1、2、3、4、5和7可能是候选基因。他们开始与北京清华大学的谢伟合作,缩小候选范围。谢伟的团队利用实验室小鼠,敲除了所有可能的候选基因,然后系统地恢复了OBOX基因,确定了哪些基因对子代基因组的激活至关重要。如果没有这些基因,胚胎发育就会在两到四细胞阶段停止。最有趣也是最出乎意料的是,这些OBOX基因的功能具有高度冗余性:敲除一个基因可以被另一个基因取代。舒尔茨说,这种冗余可能是由于过渡如此重要而进化出来的。此外,研究人员还发现,OBOX基因的功能是促进PolII定位到正确的基因,从而开始激活子代基因组。在小鼠体内,基因组激活发生在两细胞阶段。在人类胚胎中,基因组激活发生在胚胎经过几轮分裂形成八个细胞之后。一个悬而未决的问题是,这一过程在不同物种间有多大的一致性,即类似OBOX的基因是否参与了人类的基因组激活?这项工作还对了解胚胎干细胞如何重新编程,使其能够发育成身体的任何组织具有意义。...PC版:https://www.cnbeta.com.tw/articles/soft/1373549.htm手机版:https://m.cnbeta.com.tw/view/1373549.htm

封面图片

鲨鱼托儿所:揭开软骨鱼活产的神秘面纱

鲨鱼托儿所:揭开软骨鱼活产的神秘面纱皱腮鲨具有独特的活体繁殖模式,并被认为表现出不少于三年的漫长孕育时间。因此,为了理解胎生性的进化,有必要在不同的进化谱系中研究这一特征。就软骨鱼类而言,包括鲨鱼、鳐鱼和鳐鱼等物种,这些物种中多达70%的鱼会产下活体幼鱼。尽管如此,由于这些动物难以捉摸的性质、低繁殖力以及庞大和重复的基因组,人们对它们的活体性仍然了解不足。在最近发表在《基因组生物学与进化》上的一篇文章中,由日本理化学研究所生物系统动力学研究中心植物信息学实验室组长ShigehiroKuraku领导的一个研究小组,着手解决这一问题。他们的研究确定了蛋黄蛋白,这些蛋白在哺乳动物转向胎生后消失,但在胎生鲨鱼和鳐鱼中保留。他们的研究结果表明,这些蛋白质可能已经进化出一种新的作用,为软骨鱼类的发育中的胚胎提供营养。据现在在三岛国立遗传学研究所担任分子生命史实验室教授的Kuraku说,调查人员长期以来一直想进一步了解鲨鱼及其亲属中胎生性的进化。"繁殖是软骨鱼类最迷人的特征之一,因为它们显示出广泛的繁殖模式"。在胎生物种中,这包括一系列为发育中的胚胎提供营养的机制,从完全依靠胚胎卵黄囊中的营养,到喂养胚胎未受精卵,从子宫中分泌营养("子宫乳"),或通过胎盘转移营养物质。为了更好地了解这些不同的机制,作者搜索了12种软骨鱼类的基因组和转录组数据,以寻找卵黄素(VTG)的同源物,卵黄素是产卵物种在雌性肝脏中合成的主要卵黄蛋白。无论它们的繁殖方式如何,所有软骨鱼类都至少有两个Vtg的拷贝,而所有Vtg的拷贝都已从哺乳动物中消失(尽管作者在一种有袋动物中发现了一个拷贝,而以前并不知道它有一个Vtg基因)。接下来,作者搜索了VTG受体的同源物;虽然哺乳动物保留了该受体的一个拷贝,但Kuraku和他的同事在软骨鱼类中发现了两个古老的串联复制,产生了三个受体的拷贝。作者指出,这一发现是出乎意料的。"我们预测鲨鱼基因组中保留了蛋黄蛋白基因,因为活体鲨鱼部分依赖于蛋黄的营养供应,"Kuraku说。"最让我们吃惊的是,包括鲨鱼在内的软骨鱼类有更多的蛋黄蛋白受体基因拷贝"。这表明,这些蛋白质可能在这种胎生鱼系中提供一种新的功能。为了阐明VTG及其受体在这些物种中的功能,作者比较了一种产卵鲨鱼(云纹猫鲨)和两种胎生鲨鱼的组织转录组数据。皱腮鲨是一种胎生物种,不向发育中的胚胎提供母体营养,而星鲨则有胎盘。在产卵的云纹猫鲨中,VTG主要在肝脏中表达,而其受体主要在卵巢中表达。相反,在两种胎生鲨鱼中,VTG不仅在肝脏中表达,而且在子宫中也表达。有趣的是,VTG受体在这些物种的子宫中也有表达。这表明,VTG蛋白可能不仅具有卵黄营养物的功能,而且还可能被输送到子宫,在那里它们可能在一些软骨鱼类中发挥提供基于母体的营养的作用。正如作者所指出的,这种令人感兴趣的可能性还有待通过功能研究加以证实。他们还希望将这一分析扩展到对与软骨鱼各种繁殖模式相关的因素进行全基因组调查。不幸的是,鉴于在获得生物样本方面的挑战,这种实验在这些物种中很难进行。然而,Kuraku和他的合作者希望能改变这种情况。Kuraku说:"这项研究是通过具有各种专业知识的人之间的网络来实现的,他们认识到软骨鱼的生物潜力,这也带来了Squalomix联盟的启动和发展,"这是一项在2020年发起的倡议,旨在促进专门针对鲨鱼和鳐鱼物种的基因组和分子方法。该联盟旨在公开其资源,包括一种可能有助于实现分子功能测定的细胞培养技术,促进未来对这些难以捉摸和迷人的生物的繁殖模式的研究。...PC版:https://www.cnbeta.com.tw/articles/soft/1358991.htm手机版:https://m.cnbeta.com.tw/view/1358991.htm

封面图片

科学家成功对活体动物的单个细胞进行基因改造

科学家成功对活体动物的单个细胞进行基因改造研究人员开发出一种利用CRISPR-Cas技术同时修改成年动物细胞中多个基因的技术,这种技术创造出一种类似马赛克的模式,从而简化了遗传疾病的研究。这种方法揭示了对遗传疾病22q11.2缺失综合征的新认识,并有可能在未来减少动物实验的数量。资料来源:苏黎世联邦理工学院由巴塞尔苏黎世联邦理工学院生物系统科学与工程系生物工程教授兰德尔-普拉特领导的研究人员现在开发出了一种方法,可以大大简化和加快实验动物的研究:利用CRISPR-Cas基因剪刀,他们可以在一只动物的细胞中同时改变几十个基因,就像打马赛克一样。虽然每个细胞中改变的基因不超过一个,但一个器官中的不同细胞会以不同的方式发生改变。这样就可以对单个细胞进行精确分析。这样,研究人员就能在一次实验中研究多种不同基因变化的影响。根据最近发表在《自然》(Nature)杂志上的一份报告,苏黎世联邦理工学院的研究人员首次成功地将这种方法应用于活体动物,特别是成年小鼠。此前,其他科学家已经针对培养细胞或动物胚胎开发出了类似的方法。为了"告知"小鼠细胞CRISPR-Cas基因剪刀应该破坏哪些基因,研究人员使用了腺相关病毒(AAV),这是一种可以靶向任何器官的传递策略。他们制备了病毒,使每个病毒粒子都携带破坏特定基因的信息,然后用携带不同基因破坏指令的混合病毒感染小鼠。这样,他们就能关闭一个器官细胞中的不同基因。在这项研究中,他们选择了大脑。利用这种方法,苏黎世联邦理工学院的研究人员与日内瓦大学的同事一起,获得了人类一种罕见遗传疾病--22q11.2缺失综合征--的新线索。这种疾病的患者表现出许多不同的症状,通常被诊断为精神分裂症和自闭症谱系障碍等其他疾病。在此之前,人们知道这种疾病是由一个包含106个基因的染色体区域引起的。人们还知道这种疾病与多种基因有关,但不知道哪些基因在疾病中起作用。在对小鼠的研究中,研究人员重点研究了这一染色体区域中同样在小鼠大脑中活跃的29个基因。在每只小鼠的脑细胞中,他们修改了这29个基因中的一个,然后分析了这些脑细胞的RNA图谱。科学家们能够证明,其中三个基因在很大程度上导致了脑细胞的功能障碍。此外,他们还在小鼠细胞中发现了与精神分裂症和自闭症谱系障碍相似的模式。在这三个基因中,有一个已经为人所知,但另外两个以前并不是科学界关注的焦点。普拉特研究小组的博士生、该研究的第一作者安东尼奥-桑蒂尼亚说:"如果我们知道疾病中哪些基因的活性异常,我们就可以尝试开发补偿这种异常的药物。"这种方法也适用于研究其他遗传疾病。桑蒂尼亚说:"在许多先天性疾病中,多个基因都在起作用,而不仅仅是一个。精神分裂症等精神疾病也是如此。现在,我们的技术可以让我们直接在完全生长的动物体内研究这类疾病及其遗传原因。每次实验修改的基因数量可以从目前的29个增加到几百个。"研究人员现在可以在活体生物中进行这些分析,这是一个很大的优势,因为细胞在培养过程中的行为与它们作为活体的一部分的行为是不同的。另一个优势是,科学家只需将AAV注射到动物的血液中即可。AAV有多种不同的功能特性。在这项研究中,研究人员使用了一种能进入动物大脑的病毒。根据要研究的内容,也可以使用针对其他器官的AAV。苏黎世联邦理工学院已经为这项技术申请了专利,现在,研究人员希望将其作为"肽"研究的一部分。...PC版:https://www.cnbeta.com.tw/articles/soft/1385987.htm手机版:https://m.cnbeta.com.tw/view/1385987.htm

封面图片

科学家成功解码果蝇孤雌生殖的基因过程

科学家成功解码果蝇孤雌生殖的基因过程为了取得突破性进展,剑桥大学的研究人员在六年时间里对22万多只果蝇进行了研究。为了寻找导致昆虫"孤雌生殖"的基因,研究小组研究了另一种果蝇--丝光果蝇的两个品系。其中一个品系只能进行有性繁殖,而另一个品系却能进行孤雌生殖。通过比较这两个品系的遗传密码,科学家们找出了哪些基因与孤雌生殖有关。他们打开或关闭了相应的基因,使之与黑腹果蝇相匹配,并取得了成功。受试果蝇突然可以进行无性繁殖,尽管它们只能生出几乎是其父母克隆的雌蝇。在研究中,果蝇等待了大约40天(约占其生命的一半)来寻找雄性配偶,当没有雄性配偶时,它们就进行无性繁殖。有趣的是,转基因虫子的所有女儿也都保留了孤雌生殖的能力,不过只有1%到2%的女儿有这种行为,而且是在没有雄性出现的情况下。否则,它们照常交配和生育。剑桥大学研究员、论文第一作者亚历克西斯-斯珀林博士说:"我们首次证明可以在动物身上设计出处女产子--看到孤独的雌性果蝇产生一个能够发育到成年的胚胎,然后重复这个过程,真是令人兴奋。"研究人员说,在可以进行有性繁殖的动物中,孤雌生殖的情况极为罕见,但有时也会在长期与世隔绝的雌性动物园动物身上看到。不过,当一些物种面临生存压力时,它们会进化出一种无性繁殖模式。事实上,斯帕林计划利用这项工作,进一步研究为什么世界各地的昆虫--尤其是害虫的孤雌生殖现象开始增多。斯佩林说:"如果昆虫害虫的处女生育继续存在选择压力,最终将导致它们只能以这种方式繁殖。"这可能会成为农业的一个真正问题,因为雌虫只生产雌虫,所以它们的传播能力会加倍。斯珀林和她的团队还指出,虽然他们的研究可能是首创,但可能无法应用到其他动物身上。这是因为黑腹果蝇被用于研究已经有一个多世纪了,而且其遗传密码也非常清楚。事实上,通过对该物种的研究,人们可能已经了解了延长寿命、了解零重力对身体的影响、追踪微塑料对健康的影响,以及为消除创伤记忆提供了一种可能的方法。该研究成果已在《当代生物学》(CurrentBiology)杂志上发表。...PC版:https://www.cnbeta.com.tw/articles/soft/1373735.htm手机版:https://m.cnbeta.com.tw/view/1373735.htm

🔍 发送关键词来寻找群组、频道或视频。

启动SOSO机器人