上海微系统所:开发了可批量制造的新型光学 “硅” 与芯片技术,新硅聚合已具备异质晶圆量产能力

上海微系统所:开发了可批量制造的新型光学“硅”与芯片技术,新硅聚合已具备异质晶圆量产能力中国科学院今日官网消息,5月8日,中国科学院上海微系统所的欧欣研究员团队联手瑞士洛桑联邦理工学院TobiasJ.Kippenberg团队,在钽酸锂异质集成晶圆及高性能光子芯片制备领域取得突破性进展,相关成果以《可批量制造的钽酸锂集成光子芯片》为题发表于国际学术期刊《自然》。其中,钽酸锂光子芯片所展现出的极低光学损耗、高效电光转换和孤子频率梳产生等特性有望为突破通信领域速度、功耗、频率和带宽四大瓶颈问题提供解决方案,并在低温量子、光计算、光通信等领域催生革命性技术。据悉,该团队孵化的上海新硅聚合半导体有限公司已经具备异质晶圆量产能力,并开发出8英寸异质集成材料技术,为更大规模的国产光学和射频芯片的发展奠定了核心材料基础。

相关推荐

封面图片

九峰山实验室8寸硅光薄膜铌酸锂光电集成晶圆下线

九峰山实验室8寸硅光薄膜铌酸锂光电集成晶圆下线薄膜铌酸锂由于出色的性能在滤波器、光通讯、量子通信、航空航天等领域均发挥着重要作用。但铌酸锂材料脆性大,大尺寸铌酸锂晶圆制备工艺困难,铌酸锂微纳加工制备工艺也一直被视为挑战。目前,业界对薄膜铌酸锂的研发还主要集中在3寸、4寸、6寸晶圆的制备及片上微纳加工工艺上。九峰山实验室工艺中心基于8寸SOI硅光晶圆键合8寸铌酸锂晶圆,单片集成光电收发功能,成功破解了这一难题。九峰山实验室表示,近年来,由于5G通信、大数据、人工智能等行业的强力驱动,光子集成技术得到极大关注。铌酸锂以其大透明窗口、低传输损耗、良好的光电/压电/非线性等物理性能以及优良的机械稳定性等被认为是理想的光子集成材料,而单晶薄膜铌酸锂则为解决光子集成芯片领域长期存在的低传输损耗、高密度集成以及低调制功耗需求提供了至今为止综合性能最优的解决方案。据悉,湖北九峰山实验室于2021年由湖北省人民政府正式批复组建,实验室面向世界科技前沿,面向国民经济主战场和国家重大需求,以建设先进的化合物半导体研发和创新中心为愿景,在中国光谷建立起全球一流的化合物半导体工艺、检测基础设施,打造公共、开放、共享的科研平台。...PC版:https://www.cnbeta.com.tw/articles/soft/1422252.htm手机版:https://m.cnbeta.com.tw/view/1422252.htm

封面图片

中国科学院今日官网消息,5月8日,中国科学院上海微系统所的欧欣研究员团队联手瑞士洛桑联邦理工学院TobiasJ.Kippenbe

中国科学院今日官网消息,5月8日,中国科学院上海微系统所的欧欣研究员团队联手瑞士洛桑联邦理工学院TobiasJ.Kippenberg团队,在钽酸锂异质集成晶圆及高性能光子芯片制备领域取得突破性进展。其中,钽酸锂光子芯片所展现出的极低光学损耗、高效电光转换和孤子频率梳产生等特性有望为突破通信领域速度、功耗、频率和带宽四大瓶颈问题提供解决方案,并在低温量子、光计算、光通信等领域催生革命性技术。

封面图片

基于钽酸锂的新型光子集成电路技术提高了成本效益和可扩展性

基于钽酸锂的新型光子集成电路技术提高了成本效益和可扩展性钽酸锂光子集成电路最近,绝缘体上的铌酸锂晶圆平台因其强大的波克尔斯系数而成为光子集成电光调制器的上佳材料。然而,高昂的成本和复杂的生产要求使得铌酸锂无法得到更广泛的应用,限制了其商业集成。钽酸锂(LiTaO3)是铌酸锂的近亲,有望克服这些障碍。钽酸锂(LiTaO3)与铌酸锂的近亲钽酸锂(LiTaO3)有望克服这些障碍。钽酸锂具有类似的优异电光质量,但在可扩展性和成本方面比铌酸锂更具优势,因为它已被电信行业广泛用于5G射频滤波器。现在,EPFL的TobiasJ.Kippenberg教授和中国科学院上海微系统与信息技术研究所(SIMIT)的欧欣教授领导的科学家们创建了一种基于钽酸锂的新型PIC平台。这种PIC充分利用了材料的固有优势,使高质量PIC更加经济可行,从而改变了这一领域。这一突破发表在5月8日的《自然》杂志上。研究人员为钽酸锂开发了一种与硅绝缘体生产线兼容的晶片键合方法。然后,他们用类金刚石碳掩蔽了薄膜钽酸锂晶片,并着手蚀刻光波导、调制器和超高品质因数微谐振器。蚀刻是通过结合深紫外线(DUV)光刻技术和干蚀刻技术实现的,这些技术最初是针对铌酸锂开发的,后来经过仔细调整,用于蚀刻硬度更高、惰性更强的钽酸锂。这种调整包括优化蚀刻参数,以尽量减少光损耗,这是实现光子电路高性能的关键因素。利用这种方法,研究小组能够制造出高效率的钽酸锂PIC,其电信波长的光损耗率仅为5.6dB/m。另一个亮点是电光马赫-泽恩德调制器(MZM),这是当今高速光纤通信中广泛使用的一种设备。钽酸锂MZM的半波压长积为1.9Vcm,电光带宽达到40GHz。"在保持高效电光性能的同时,我们还在这一平台上生成了孤子微蜂窝,"该研究的第一作者王成利说。"这些孤子微蜂窝具有大量的相干频率,与电光调制功能相结合,特别适用于并行相干激光雷达和光子计算等应用"。钽酸锂PIC的双折射(折射率对光的偏振和传播方向的依赖性)降低,可实现密集的电路配置,并确保在所有电信频段都具有广泛的操作能力。这项工作为可扩展、经济高效地制造先进的电子光学PIC铺平了道路。编译来源:ScitechDaily...PC版:https://www.cnbeta.com.tw/articles/soft/1430650.htm手机版:https://m.cnbeta.com.tw/view/1430650.htm

封面图片

需求疲软叠加新产能开出 硅晶圆供过于求恐延至2025年

需求疲软叠加新产能开出硅晶圆供过于求恐延至2025年对于硅晶圆产业需求低迷的原因,业内人士指出,主要原因是消费电子需求持续不振,IC设计投单保守,各大晶圆厂对第三季展望普遍持保守态度,无明显旺季效应,而存储厂仍在减产周期,各大晶圆厂、存储厂库存持续创下历史新高。此前研究机构TECHCET预计,由于半导体行业整体放缓,2023年硅晶圆总体出货量将下降7%,出货量放缓与晶圆库存增加相结合,减轻了2023年晶圆市场、特别是300毫米晶圆市场的供需压力,并实现了供需平衡,而2024年晶圆总出货量预计将反弹并增长约8%。TECHCET指出,排名前五的晶圆供应商(SEH、Sumco、GlobalWafers、Siltronic和SKSiltron)均宣布了全新投资的扩张计划,扩建项目正在陆续投产,这将导致产能持续增长。根据市场状况和长期供应协议(LTA)的状况,预计供应商还将在2025年之后进一步提高产能。...PC版:https://www.cnbeta.com.tw/articles/soft/1378443.htm手机版:https://m.cnbeta.com.tw/view/1378443.htm

封面图片

硅晶圆市况“急转直下” 二三线厂恐最受冲击

硅晶圆市况“急转直下”二三线厂恐最受冲击半导体景气下行蔓延至最上游的硅晶圆材料领域。据《电子时报》报道,知情人士透露,近期8英寸硅晶圆市况急转直下,12英寸硅晶圆产品也难逃冲击,部分厂商同意长约客户延后拉货,后续二、三线厂遭受的冲击可能大于一线厂。PC版:https://www.cnbeta.com/articles/soft/1320661.htm手机版:https://m.cnbeta.com/view/1320661.htm

封面图片

1.6nm、晶圆级超级封装、硅光子集成...台积电北美6大技术王炸

1.6nm、晶圆级超级封装、硅光子集成...台积电北美6大技术王炸  研究机构TechInsights报告显示,台积电2023年总销售额达到692.76亿美元,成为全球半导体产业冠军。摩根大通(小摩)、摩根士丹利等金融服务机构均对台积电的后续发展给出乐观预测,小摩在最新报告中认为,台积电在技术创新和先进封装领域的领先地位,以及在AI时代的关键作用,通过一系列技术突破,有望在未来几年继续保持在半导体产业的领先地位。以下为台积电在2024北美论坛公布的六大半导体技术:A161.6nm制程技术台积电A16制程节点是其首个整合纳米片晶体管(nanosheet)以及背面供电技术“SuperPowerRail”的节点,特别适合高性能计算(HPC)及人工智能(AI)应用,是台积电N2P制程的迭代。根据台积电此前公布的路线图,N2、N2P2nm节点定于2025年量产,A16预计将于2026年下半年量产。与2nmN2P节点相比,A16提高了晶体管密度和能效,在相同Vdd(正电源电压)下可实现8~10%的速度提升;在相同速度下,功耗可以降低15~20%。该技术可以帮助数据中心计算芯片实现1.07~1.10倍的芯片密度。台积电在北美峰会同时宣布A14工艺节点,预计将采用第二代纳米片晶体管以及更先进的背面供电网络,有望在2027~2028年开始生产,预计不会采用HighNAEUV光刻机。根据路线图,台积电1nm制程A10已在规划中。消息人士于2024年1月透露,台积电将更先进制程的1nm晶圆厂规划在嘉义科学园区,已派人前往目标地块勘测。这一选址离嘉义高铁站车程仅七分钟,往北串起台积电中科、竹科厂,往南串连南科厂及高雄厂,便于工程师通勤交流。NanoFlex创新纳米片晶体管台积电即将推出的N2制程工艺将采用NanoFlex创新纳米片晶体管技术,这是该公司在设计与技术协同优化方面的又一突破。NanoFlex为N2制程标准单元提供设计灵活性,其中短小晶体管单元可实现更小的面积和更高能效,而高单元则最大限度提高性能。客户能够在同一设计内优化小单元和大单元的组合,调整设计,以达到最佳功耗、性能和面积平衡。N4C制程技术台积电宣布推出N4C技术,是N4P的迭代,可降低8.5%的芯片成本,计划于2025年量产。该技术提供具有高效面积利用率的基础IP和设计规则,与广泛应用的N4P兼容,缩小芯片尺寸并提高良率,为客户提供高性价比选择。CoWoS、SoIC和系统级晶圆(TSMC-SoW)台积电表示,CoWoS先进封装已成为AI芯片的关键技术,被广泛采用,允许客户将更多的处理器内核与HBM高带宽存储堆叠封装在一起。与此同时,集成芯片系统(SoIC)已成为三维芯片堆叠的领先解决方案,客户正越来越多地将CoWoS与SoIC及其他组件搭配使用,以实现最终的系统级封装(SiP)集成。台积电宣布推出CoW-SoW封装技术(TSMC-SoW),基于台积电于2020年推出的InFO-SoW晶圆上系统集成技术迭代而成。通过晶圆级系统集成封装技术(SoW),可以在单片12英寸晶圆上制造大型芯片阵列,提供更强算力的同时,减少空间占用,并将每瓦性能提升多个数量级。此前特斯拉的DojoD1超级芯片,就利用台积电的此类工艺实现,利用单片晶圆实现强大算力。据悉,特斯拉自研的DojoD1超级芯片采用台积电7nm制程,并结合InFO-SoW先进封装、垂直供电结构制造而成,用于训练自动驾驶汽车AI大模型。参数方面,每个模组包含5×5总计25颗芯片,每个单芯片包含高达354个核心,因此片上SRAM换从总计达11GB,算力9050TFLOPS。台积电表示,首款SoW产品——基于集成扇出型封装(InFO)技术的纯逻辑晶圆已投入生产。利用CoWoS技术的CoW-SoW晶圆预计将于2027年问世,届时将可以集成SoIC、HBM和其他组件,创建强大的单晶圆级系统,其计算能力可以与整个机架甚至整个服务器相媲美。这类芯片将拥有巨大的面积,可以集成四个SoIC芯片+12个HBM存储芯片以及额外的I/O芯片,功率可达数千瓦。硅光子集成COUPE台积电正在开发紧凑型通用光子引擎(COUPE)技术,以支持人工智能热潮带来的数据传输爆发式增长。COUPE采用SoIC-X芯片堆叠技术,在硅光子芯片堆叠电子芯片,并保证两片芯片之间最低的传输阻抗,能效比传统堆叠方式更高。台积电计划在2025年将COUPE技术用于小尺寸插拔式设备,速度可达1.6Tbps,相比当前最先进的800G以太网成倍提升。2026年,台积电将其整合入CoWoS封装中,作为共同封装光学器件(CPO)直接将光学连接引入封装中,这样可以实现高达6.4Tbps的速度。第三个迭代版本有望进一步改进,速度翻倍至12.8Tbps。汽车芯片先进封装继2023年推出N3AE“AutoEarly”制程后,台积电将继续通过整合先进芯片和先进封装,满足汽车客户对更高算力的需求,以及车规级认证的要求。台积电正在为高级辅助驾驶系统(ADAS)、车辆控制和车载中央计算机等应用开发InFO-oS和CoWoS-R解决方案,目标是在2025年第四季度之前获得AEC-Q1002级认证。日前台积电法说会之后,大摩预计台积电Q2营收将环比增长5%~7%,并给出860元新台币的目标股价预测。小摩预测台积电今年毛利率维持在52%~54%区间,预计今年年底3nm产能将达到10万片规模,明年将增加到15万片,并给出900元新台币的目标股价。小摩同时预计,台积电在未来3~4年内,在AI芯片的市场占有率仍将维持在90%以上,到2027年AI相关收入占比将升至总营收的25%。台积电法说会、多场技术论坛过后,给市场释出稳健信号,包括花旗银行、美银证券、瑞银在内的金融机构,均对台积电给出全年营收增长的预测。在人工智能市场需求持续增长的带动下,以及美日芯片工厂新产能的释放,预计台积电未来几年将持续领衔全球半导体产业,并凭借技术实力保持AI芯片领域的龙头地位。...PC版:https://www.cnbeta.com.tw/articles/soft/1429780.htm手机版:https://m.cnbeta.com.tw/view/1429780.htm

🔍 发送关键词来寻找群组、频道或视频。

启动SOSO机器人