唉,基因

唉,基因操你妈,我有脂溢性皮炎,从小到大头皮屑很多、头发很油、几天不洗头味道就很臭。又导致后背长痘痘,不小心破了就一滩血把衣服弄脏。先天眼球容易变形,鼠鼠不过是大学才开始玩智能手机,以前也就看看电视居然也有三四百度近视眼。脑神经发育不良,有注意力不集中症(ADHD)和自闭症阿斯伯格谱系(ASD),接人待物与周遭格格不入,是及格线以下水平。咽喉炎,大二感冒过一次就开始作妖了,喉咙经常巨痒,本鼠舅舅也有这个。胃、肝、肾亚健康。一直尿床到初中,就是大学毕业了也有一次因为昼夜颠倒加上喝了太多水睡觉时尿裤子上了

相关推荐

封面图片

智翔金泰:GR1802 注射液启动中、重度特应性皮炎适应症 III 期临床试验将正式启动

智翔金泰:GR1802注射液启动中、重度特应性皮炎适应症III期临床试验将正式启动智翔金泰公告,近日,公司就“一项评价GR1802注射液在中、重度特应性皮炎患者中的有效性、安全性和免疫原性的随机、双盲、安慰剂对照、多中心III期临床试验”的开展,完成与国家药品监督管理局药品审评中心(CDE)EOP2(II期临床试验结束/III期临床试验启动前)的会议沟通,公司将正式启动该III期临床试验。

封面图片

大脑的 "冷静药" - 科学家发现抑制焦虑的基因

大脑的"冷静药"-科学家发现抑制焦虑的基因一个国际科学家团队已经确定了大脑中驱动焦虑症状的一个基因。重要的是,对该基因的修改被证明可以降低焦虑水平,为焦虑症提供了一个令人兴奋的新的药物目标。这一发现由布里斯托尔大学和埃克塞特大学的研究人员领导,于4月25日发表在《自然通讯》杂志上。焦虑症很常见,每4个人中就有1人被诊断为焦虑症,在他们的一生中至少有一次焦虑症。严重的心理创伤会引发大脑杏仁核中神经元的遗传、生化和形态变化--杏仁核是牵涉到压力引起的焦虑的脑区,导致焦虑症的发作,包括恐慌症和创伤后应激障碍。然而,目前可用的抗焦虑药物的疗效很低,超过一半的患者在治疗后没有获得缓解。在开发强效抗焦虑药物方面取得的成功有限,这是由于我们对焦虑的神经回路和导致与压力有关的神经精神状态的分子事件了解不足。在这项研究中,科学家们试图确定大脑中支撑焦虑的分子事件。他们专注于一组分子,在动物模型中被称为miRNAs。这组重要的分子在人脑中也有发现,它能调节控制杏仁核中细胞过程的多种目标蛋白。在急性应激之后,该团队发现一种叫做miR483-5p的分子在小鼠杏仁核中的数量增加。重要的是,研究小组表明,增加的miR483-5p抑制了另一个基因Pgap2的表达,Pgap2反过来驱动了大脑中神经元形态的变化和与焦虑有关的行为。研究人员共同表明,miR-483-5p作为一个分子制动器,抵消了压力诱导的杏仁核变化,促进焦虑的缓解。发现一个新的杏仁核miR483-5p/Pgap2途径,大脑通过该途径调节对压力的反应,是发现新的、更有力的、急需的焦虑症治疗方法的第一块垫脚石,将加强这一途径。该研究的主要作者之一、布里斯托尔大学生理学、药理学和神经科学学院的MRC研究员和神经科学讲师ValentinaMosienko博士说:"压力可以触发一些神经精神疾病的发作,其根源在于遗传和环境因素的不利组合。虽然低水平的压力被大脑的自然调整能力所抵消,但严重或长期的创伤经历可以克服应激反应的保护机制,导致抑郁症或焦虑症等病症的发展。""miRNAs在战略上准备好控制复杂的神经精神疾病,如焦虑症。但是它们用来调节应激反应和易感性的分子和细胞机制直到现在还基本上是未知的。我们在这项研究中发现的miR483-5p/Pgap2途径,其激活发挥了减少焦虑的作用,为开发针对人类复杂精神疾病的抗焦虑疗法提供了巨大潜力。"...PC版:https://www.cnbeta.com.tw/articles/soft/1357589.htm手机版:https://m.cnbeta.com.tw/view/1357589.htm

封面图片

研究:一种糖尿病药物有助清除实验鼠衰老细胞

研究:一种糖尿病药物有助清除实验鼠衰老细胞日本顺天堂大学日前发布新闻公报说,该校研究人员等参与的一个团队成功利用一种糖尿病药物清除了实验鼠体内的一些衰老细胞,不仅改善了实验鼠的代谢异常、动脉硬化等症状,还延长了患早衰症实验鼠的寿命。据公报介绍,团队给实验鼠喂食高脂肪食物令其发胖,然后用钠-葡萄糖协同转运蛋白2抑制剂(SGLT-2抑制剂)进行短期治疗。结果显示,积蓄在实验鼠内脏脂肪中的衰老细胞被清除,内脏脂肪的炎症、糖代谢紊乱和胰岛素抵抗也都得到了改善。

封面图片

新研发的湿疹药物可通过抑制炎症基因发挥作用

新研发的湿疹药物可通过抑制炎症基因发挥作用来自范德比尔特大学医学中心的研究人员花了数年时间开发了一种新型肽,旨在通过沉默某些基因的活动来穿透免疫细胞并阻止炎症信号的传递。与目前其他湿疹治疗方法不同的是,这种新的治疗方法通常只能部分地抑制炎症信号,而广泛地针对各种炎症介质。这项研究的首席调查员JacekHawiger解释说:"我们通过证明我们可以控制至少15个负责生产皮肤炎症主要介质的基因,揭开了湿疹的机制。"在2022年底发表的一项研究中,研究人员描述了这种新型疗法对特应性皮炎动物模型的影响。在使用该外用药膏治疗的几天内动物的皮损已经痊愈。研究人员还指出,这种实验性外用药物对动物没有毒性影响,而且成功地抑制了炎症细胞的皮肤浸润。一项1/2期人体临床试验已经取得了很大进展,重点是轻度至中度特应性皮炎患者。试验的第一部分是一个剂量升级研究,跟踪身体各部位的外用药物浓度增加的安全性。试验的第二部分将招募100多名参与者,分为三个组群,每个组群测试不同剂量的药物。主要结果将是观察这种局部治疗在使用28天后如何有效改善湿疹症状。一家名为AmytrxTherapeutics的生物制药公司已经成立,以加速这种新疗法的商业开发。这种药物被称为AMTX-100,而针对特应性皮炎的外用药膏只是探索这种新分子用途的开始。除了治疗各种皮肤病(如银屑病和痤疮)的药膏外,正在进行临床前研究,研究针对各种自身免疫性疾病的口服和注射形式的药物,包括炎症性肠病、关节炎和哮喘。据Amytrx公司首席执行官MattGonda称,该药物为抗炎治疗提供了一个全新的模式。"通过自然调节AMTX-100所针对的一个关键途径,它代表了用于启动炎症的内部检查点,AMTX-100有能力提供广泛的靶向治疗活性,而不影响对细胞生长和生存能力至关重要的重要内务基因,大大减少了许多小分子和生物抗炎药的副作用和安全问题,"Gonda解释说。这项新研究发表在《科学报告》上。...PC版:https://www.cnbeta.com.tw/articles/soft/1339051.htm手机版:https://m.cnbeta.com.tw/view/1339051.htm

封面图片

焦虑症缓解在望:科学家们发现了关键基因

焦虑症缓解在望:科学家们发现了关键基因四分之一的人一生中至少有一次受到影响,焦虑症的发生是相当普遍的。严重的心理压力可以激活杏仁核神经元的遗传、生化和结构改变--杏仁核是大脑中与压力产生的焦虑有关的部分。这可能导致焦虑症的发展,包括惊恐发作和创伤后应激障碍。然而,目前可用的抗焦虑药物的疗效很低,超过一半的病人在治疗后没有得到缓解。在开发强效抗焦虑药物方面取得的成功也很有限,这是由于目前医学界对焦虑的神经回路和导致与压力有关的神经精神状态的分子事件了解不足。在这项研究中,科学家们试图确定大脑中支撑焦虑的分子事件。他们专注于一组分子,在动物模型中被称为miRNAs。这组重要的分子在人脑中也有发现,它能调节控制杏仁核中细胞过程的多种目标蛋白。在急性应激之后,该团队发现一种叫做miR483-5p的分子在小鼠杏仁核中的数量增加。重要的是,研究小组表明,增加的miR483-5p抑制了另一个基因Pgap2的表达,Pgap2反过来驱动了大脑中神经元形态的变化和与焦虑有关的行为。研究人员共同表明,miR-483-5p作为一个分子制动器,抵消了压力诱导的杏仁核变化,促进焦虑的缓解。发现一个新的杏仁核miR483-5p/Pgap2途径,大脑通过该途径调节对压力的反应,是发现新的、更有力的、急需的焦虑症治疗方法的第一块垫脚石,将加强这一途径。该研究的主要作者之一、布里斯托尔大学生理学、药理学和神经科学学院的MRC研究员和神经科学讲师ValentinaMosienko博士说:"压力可以触发一些神经精神疾病的发作,其根源在于遗传和环境因素的不利组合。虽然低水平的压力被大脑的自然调整能力所抵消,但严重或长期的创伤经历可以克服应激反应的保护机制,导致抑郁症或焦虑症等病症的发展。""miRNAs在战略上准备好控制复杂的神经精神疾病,如焦虑症。但是它们用来调节应激反应和易感性的分子和细胞机制直到现在还基本上是未知的。我们在这项研究中发现的miR483-5p/Pgap2途径,其激活发挥了减少焦虑的作用,为开发人类复杂精神疾病的抗焦虑疗法提供了巨大潜力。"...PC版:https://www.cnbeta.com.tw/articles/soft/1364205.htm手机版:https://m.cnbeta.com.tw/view/1364205.htm

封面图片

减少不必要的突变 新技术为更安全的基因编辑打开了大门

减少不必要的突变新技术为更安全的基因编辑打开了大门来自日本九州大学和名古屋大学医学院的研究人员开发出了一种优化的基因组编辑方法,它可以大大减少CRISPR-Cas9中不需要的突变和毒性。这种被称为"保障性gRNA"([C]gRNA)的新技术展示了安全和高效基因治疗的潜力,可应用于治疗像纤维发育不良性骨质增生这样的遗传疾病。他们的研究已经发表在《自然-生物医学工程》上。以CRISPR-Cas9为中心的基因组编辑技术已经彻底改变了食品和医药行业。在该技术中,Cas9核酸酶是一种切割DNA的酶,它与合成的引导RNA(gRNA)一起被引入细胞中,引导酶到达所需的位置。通过切割基因组,不需要的基因可以被删除,而新的(功能性)基因可以被轻松而快速地加入进来。基因组编辑的一个缺点是,人们越来越担心突变和脱靶效应。这通常是由于酶瞄准的基因组位点具有与目标位点相似的序列而造成的。同样,当基因被改变时,染色体水平的突变也会发生,这已经阻碍了基因治疗癌症的临床试验,甚至导致接受肌肉萎缩症治疗的病人死亡。该小组假设,目前使用Cas9的编辑协议会造成过度的DNA裂解,从而导致一些突变。为了验证这一假设,由九州大学的MasakiKawamata助理教授和名古屋大学医学研究生院的HiroshiSuzuki教授组成的小组在小鼠细胞中构建了一个名为"AIMS"的系统,该系统对每条染色体分别评估了Cas9的活性。他们的结果显示,常用的方法与非常高的编辑活性有关。他们确定这种高活性导致了一些不必要的副作用,因此他们寻找能够抑制这种活性的gRNA修改方法。他们发现,在gRNA的5′端增加一个额外的胞嘧啶延伸是对过度活性的有效"保障",并允许控制DNA的裂解。他们称这种微调系统为'保障性gRNA'([C]gRNA)"。结果是惊人的,使用他们的新技术后,脱靶效应和细胞毒性减少了,单allele选择性编辑的效率提高了,同源定向修复的效率也提高了,这是DNA双链断裂修复最常用的机制。为了测试其在医疗环境中的有效性,他们研究了一种名为纤维发育不良的罕见疾病。利用小鼠模型,他们能够创造出与人类版本的疾病相同的基因类型。然后,利用患者衍生的iPS细胞,他们能够精确地修复导致该疾病的疾病相关等位基因中具体到单个核苷酸的损伤,证明了他们的技术作为一种安全和高效的基因治疗方法的有用性。该团队还构建了第一个关于各种基因组编辑模式和Cas9活性之间相关性的数学模型,这将使用户能够模拟整个细胞群中基因组编辑的结果。这一突破将使研究人员能够确定使效率最大化的Cas9活性,减少所需的巨大成本和劳动。"我们建立了一个新的基因组编辑平台,通过开发具有适当Cas9活性的活性调节[C]gRNAs,可以最大限度地提高所需的编辑效率。此外,我们发现'保障gRNA'可以通过调节gRNA的活性应用于各种需要gRNA的CRISPR工具,如使用Cas12a的工具,它具有不同的DNA裂解机制,"Suzuki教授说。"对于使用Cas9激活或抑制感兴趣的基因的技术,如CRISPR激活和CRISPR干扰,过度诱导或抑制基因的表达可能没有用,甚至对细胞有害。通过[C]gRNA控制表达水平是一项重要技术,可用于各种应用,包括实施精确的基因治疗"。...PC版:https://www.cnbeta.com.tw/articles/soft/1354925.htm手机版:https://m.cnbeta.com.tw/view/1354925.htm

🔍 发送关键词来寻找群组、频道或视频。

启动SOSO机器人