天文学家发现直径10亿光年的超大「宇宙气泡」https://www.bannedbook.org/bnews/bait/20

None

相关推荐

封面图片

宇宙泰坦:天文学家揭开超大质量黑洞的起源

宇宙泰坦:天文学家揭开超大质量黑洞的起源超大质量黑洞(SMBH;中心的小黑点)会吸收周围的物质,这些物质在流入黑洞时会形成一个螺旋状的圆盘。物质的引力能量转化为辐射,并从圆盘中发射出去。具有这种闪亮外围的SMBH被称为"类星体"。资料来源:松冈良树这种密切的关系意味着星系和SMBH是共同进化的。因此,揭示SMBH的起源不仅对了解SMBH本身至关重要,而且对阐明可见宇宙的主要组成部分--星系的形成过程也至关重要。解决这个问题的关键在于早期宇宙,在早期宇宙中,自宇宙大爆炸(即宇宙开始)以来所经过的时间还不到十亿年。由于光速有限,我们可以通过观测遥远的宇宙来回顾过去。当宇宙只有十亿岁或更小的时候,SMBH是否就已经存在了呢?我们用斯巴鲁望远镜拍摄的夜空照片示例。放大图像中心的小红点代表来自遥远类星体的光线,它存在于宇宙8亿岁时(130亿光年远)。图片来源:日本国立天文台黑洞是否有可能在如此短的时间内获得如此大的质量(超过一百万太阳质量,有时甚至达到数十亿太阳质量)?如果可能,其基本物理机制和条件是什么?要接近SMBH的起源,我们需要观测它们,并将它们的特性与理论模型的预测进行比较。要做到这一点,首先需要确定它们在天空中的位置。研究小组利用位于夏威夷毛纳凯亚山顶的斯巴鲁望远镜进行了本次研究。斯巴鲁望远镜最大的优势之一就是它的宽视场观测能力,这一点特别适合这项研究。由于超巨型天体不发光,研究小组寻找的是一种被称为"类星体"的特殊类别--超巨型天体的外围闪闪发光,下沉物质在那里释放引力能量。他们观测了相当于5000倍满月的广阔天空区域,成功发现了162个居住在早期宇宙中的类星体。其中,22个类星体存在于宇宙年龄不到8亿年的时代,这是迄今为止发现类星体的最古老时期。由于发现了大量类星体,他们得以确定最基本的测量方法,即"光度函数",它描述了类星体的空间密度与辐射能量的函数关系。他们发现,类星体在宇宙早期的形成速度非常快,而光度函数的整体形状(除振幅外)却随着时间的推移而保持不变。光度函数描述了空间密度(纵轴为Φ)与辐射能量(横轴为M1450)的函数关系。天文学家绘制了在宇宙年龄为8亿年(红点)、9亿年(绿菱形)、12亿年(蓝方)和15亿年(黑三角)时观测到的类星体的光度函数。曲线代表最佳拟合函数形式。类星体的空间密度随着时间的推移急剧上升,而光度函数的形状几乎没有变化。资料来源:《天体物理学杂志通讯》,949,L42,2023年光度函数的这一特征行为为理论模型提供了强有力的约束,这些理论模型最终可以重现所有观测数据,并描述SMBH的起源。另一方面,众所周知,宇宙在其早期经历了被称为"宇宙再电离"的重大相变。过去的观测表明,整个星系际空间在这一事件中被电离。电离能量的来源仍有争议,类星体的辐射被认为是一个有希望的候选者。通过对上述光度函数进行积分,我们发现类星体在早期宇宙中每侧1光年的单位体积内每秒发出1028个光子。这还不到当时维持星系际空间电离状态所需的光子的1%,因此表明类星体对宇宙再电离的贡献微乎其微。根据最近的其他观测结果,这可能是正在形成的星系中来自大质量热恒星的综合辐射。...PC版:https://www.cnbeta.com.tw/articles/soft/1381157.htm手机版:https://m.cnbeta.com.tw/view/1381157.htm

封面图片

天文学家揭开宇宙最重黑洞双星之谜

天文学家揭开宇宙最重黑洞双星之谜两个超大质量黑洞的合并是一个早已被预测到的现象,尽管从未被直接观测到过。天文学家提出的一个理论是,这些系统的质量如此之大,以至于它们耗尽了宿主星系中驱动合并所需的恒星物质。利用双子座北望远镜的档案数据,一个天文学家小组发现了一个双黑洞,为这一观点提供了有力的证据。据研究小组估计,这个双黑洞的质量是太阳质量的280亿倍,是迄今为止测量到的最重的双黑洞。这次测量不仅为双星系统的形成及其宿主星系的历史提供了宝贵的背景资料,而且还支持了一个由来已久的理论,即超大质量黑洞双星的质量在阻止超大质量黑洞合并方面起着关键作用。资料来源:NOIRLab/NSF/AURA/J.daSilva/M.Zamani几乎每个大质量星系的中心都有一个超大质量黑洞。当两个星系合并时,它们的黑洞会形成一对双星,这意味着它们处于相互束缚的轨道上。据推测,这些双星最终会合并,但这一现象从未被观测到过[1]。几十年来,天文学家们一直在讨论这样的事件是否可能发生。在最近发表于《天体物理学报》(TheAstrophysicalJournal)的一篇论文中,一个天文学家小组提出了对这一问题的新见解。一个天文学家小组利用由美国国家科学基金会NOIRLab负责运行的双子座北望远镜(国际双子座天文台的一半)提供的档案数据,测量出了迄今发现的最重的一对超大质量黑洞。两个超大质量黑洞的合并是一种早已被预测到的现象,但从未被观测到过。这对超大质量黑洞提供了一些线索,说明为什么宇宙中发生这种事件的可能性如此之小。双子座北区前所未有的洞察力研究小组利用夏威夷双子座北望远镜(由美国国家科学基金会资助的NOIRLab运行的国际双子座天文台的二分之一)的数据,分析了位于椭圆星系B20402+379内的一个超大质量黑洞双星。这是迄今为止唯一一个被分辨得足够详细,可以分别看到两个天体的超大质量黑洞双星,[2]而且它还保持着迄今为止直接测量到的最小间隔记录--仅仅24光年[3]。虽然如此接近的分离预示着强大的合并,但进一步的研究发现,这对天体已经在这个距离上停滞了30多亿年,这不禁让人产生疑问:是什么阻碍了合并?双黑洞合并的挑战为了更好地了解这个系统的动态及其停止的合并,研究小组研究了双子座北区的双子座多目标摄谱仪(GMOS)的档案数据,这些数据使他们能够确定黑洞附近恒星的速度。"GMOS出色的灵敏度使我们能够测绘出恒星在靠近星系中心时的速度,"论文共同作者、斯坦福大学物理学教授罗杰-罗曼尼(RogerRomani)说。"有了这些,我们就能推断出居住在那里的黑洞的总质量。"据研究小组估计,这对双星的质量是太阳质量的280亿倍,是迄今测量到的最重的双黑洞。这一测量结果不仅为双星系统的形成及其宿主星系的历史提供了宝贵的背景资料,而且还支持了一个由来已久的理论,即超大质量双黑洞的质量在阻止潜在合并中起着关键作用[4]。"为国际双子座天文台提供服务的数据档案蕴藏着一座尚未开发的科学发现金矿,"国家科学基金会国际双子座天文台项目主任马丁-斯蒂尔说,"对这个极端超大质量双黑洞的质量测量是一个令人敬畏的例子,说明了探索这一丰富档案的新研究可能产生的影响。"二进制系统的形成与未来了解这个双星是如何形成的,有助于预测它是否以及何时会合并--一些线索表明,这对双星是通过多个星系合并形成的。首先,B20402+379是一个"化石星系团",这意味着它是整个星系团的恒星和气体合并成一个大质量星系的结果。此外,两个超大质量黑洞的存在,加上它们巨大的总质量,表明它们是由多个星系的多个较小黑洞合并而成的。星系合并后,超大质量黑洞不会正面相撞。相反,当它们进入一个有束缚的轨道时,就会开始互相弹射。它们每经过对方一次,能量就会从黑洞传递到周围的恒星。随着它们能量的流失,这对黑洞被越拖越近,直到相距仅有一光年时,引力辐射占据上风,它们才会合并。这一过程已经在成对恒星质量的黑洞中被直接观测到--有史以来的第一次记录是在2015年通过引力波的探测--但从未在超大质量的双星中观测到过。停滞不前的合并与未来联合的可能性通过对该星系巨大质量的新了解,研究小组得出结论,需要有数量特别多的恒星才能减缓双星轨道的速度,使它们如此接近。在这个过程中,黑洞似乎甩掉了它们附近几乎所有的物质,使得星系核心缺少恒星和气体。由于没有更多的物质来进一步减缓这对天体的轨道,它们的合并在最后阶段停滞了。罗曼尼说:"通常情况下,黑洞对较轻的星系似乎有足够的恒星和质量来驱动两者迅速结合在一起。由于这对黑洞非常重,因此需要大量恒星和气体来完成这项工作。但是这对黑洞已经将中央星系中的这些物质清除干净,使它停滞不前,可供我们研究。"这对天体究竟会克服停滞状态,最终以数百万年的时间尺度合并,还是永远继续在轨道上徘徊,目前尚无定论。如果它们真的合并,产生的引力波将比恒星质量的黑洞合并产生的引力波强大一亿倍。这对天体有可能通过另一次星系合并来征服最后的距离,这将为星系注入更多的物质,或者有可能是第三个黑洞,从而使这对天体的轨道慢到足以合并。不过,鉴于B20402+379是一个化石星系团,另一个星系合并的可能性不大。"我们期待着对B20402+379的内核进行后续调查,我们将研究其中存在多少气体,"论文第一作者、斯坦福大学本科生TirthSurti说。"这应该能让我们更深入地了解超大质量黑洞最终能否合并,或者它们是否会作为双星搁浅。"说明虽然有证据表明超大质量黑洞之间的距离只有几光年,但似乎没有一个黑洞能够跨越这个最终距离。关于这种事件是否可能发生的问题被称为"最终-秒差距问题",几十年来一直是天文学家们讨论的话题。以前曾对含有两个超大质量黑洞的星系进行过观测,但在这些情况下,它们相距数千光年--太远了,不可能像在B20402+379中发现的双星那样处于相互结合的轨道上。其他黑洞动力源的距离可能更小,不过这些都是通过间接观测推断出来的,因此最好归类为候选双星。这一理论最早是由贝格尔曼等人于1980年提出的,根据数十年来对星系中心的观测,这一理论一直被认为是存在的。编译来源:ScitechDaily...PC版:https://www.cnbeta.com.tw/articles/soft/1422216.htm手机版:https://m.cnbeta.com.tw/view/1422216.htm

封面图片

天文学家在110亿光年之外探测到星系磁场

天文学家在110亿光年之外探测到星系磁场这张图片显示的是遥远的9io9星系的磁场方向,当时宇宙的年龄只有现在的20%--这是迄今为止探测到的最远的星系磁场。9io9星系中的尘粒在某种程度上与星系磁场的方向一致,因此它们会发出偏振光,这意味着光波会沿着一个偏好的方向而不是随机地摆动。ALMA探测到了这种偏振信号,天文学家可以据此推算出磁场的方向,这里显示的是叠加在ALMA图像上的弯曲线条。图片来源:ALMA(ESO/NAOJ/NRAO)/J.Geachetal.天文学家利用ALMA探测到了一个星系的磁场,这个星系非常遥远,它的光线需要110多亿年的时间才能到达我们这里。在此之前,我们从未在如此遥远的地方探测到一个星系的磁场。这段视频总结了这一发现。资料来源:欧洲南方天文台宇宙中的磁场宇宙中的许多天体都有磁场,无论是行星、恒星还是星系。英国赫特福德大学(UniversityofHertfordshire)天体物理学教授詹姆斯-盖奇(JamesGeach)说:"很多人可能不知道,我们的整个银河系和其他星系都布满了磁场,横跨数万光年。"他是最近发表在科学杂志《自然》(Nature)上的这项研究的第一作者。美国斯坦福大学研究员恩里克-洛佩兹-罗德里格斯(EnriqueLopezRodriguez)也参与了这项研究,他补充说:"尽管这些场对星系的演化非常重要,但我们实际上对它们是如何形成的知之甚少。目前还不清楚星系中的磁场在宇宙生命的早期是如何形成的,也不清楚形成的速度有多快,因为到目前为止,天文学家只绘制了离我们很近的星系的磁场图。"这幅红外图像显示的是遥远的9io9星系,在这里可以看到一个红色的弧线围绕着附近一个明亮的星系。附近的这个星系就像一个引力透镜:它的质量使周围的时空发生弯曲,使背景中来自9io9的光线发生弯曲,因此它的形状发生了扭曲。这张彩色图片是将欧洲南方天文台(ESO)位于智利的可见光和红外天文巡天望远镜(VISTA)和位于美国的加拿大-法国-夏威夷望远镜(CFHT)拍摄的红外图像结合在一起的结果。图片来源:ESO/J.Geachetal.恒星形成的作用和未来研究现在,利用欧洲南方天文台(ESO)的合作伙伴--ALMA,Geach和他的团队在一个遥远的星系中发现了一个完全形成的磁场,其结构与在附近星系中观测到的类似。这个磁场比地球磁场弱1000倍,但却延伸了16000多光年。盖奇解释说:"这一发现为我们提供了新的线索,让我们了解星系级磁场是如何形成的。在宇宙历史的这么早阶段就观测到一个发育完全的磁场,表明当年轻星系仍在成长时,横跨整个星系的磁场可以迅速形成。"研究小组认为,早期宇宙中恒星的密集形成可能对加速磁场的形成起到了一定的作用。此外,这些星场还会反过来影响后代恒星的形成方式。该发现的合著者、欧洲南方天文台天文学家罗布-艾维森(RobIvison)说,这一发现打开了"一扇了解星系内部运作的新窗口,因为磁场与正在形成新恒星的物质有关"。这段视频把我们从银河系的家带到了一个遥远的星系--9io9。我们首先看到的是可见光下的夜空,最后到达9io9星系时,我们切换到了红外光。在这里,银河系呈现出一条微弱的淡红色弧线,围绕着附近一个明亮的星系。然后我们看到的是毫米波长的9io9的ALMA图像,磁场的方向用叠加曲线表示。资料来源:ESO/ALMA(ESO/NAOJ/NRAO)/DESI/CFHT/N.Risinger(skysurvey.org)/J.Geachetal.探测遥远磁场的技术为了进行这项探测,研究小组搜索了遥远星系9io9中尘埃粒子发出的光线。星系中布满了尘埃粒子,当存在磁场时,尘埃粒子会趋于排列整齐,它们发出的光线也会变得偏振。这意味着光波会沿着一个偏好的方向振荡,而不是随机的。当ALMA探测到并绘制出来自9io9的偏振信号时,首次证实了在一个非常遥远的星系中存在磁场。盖奇说:"任何其他望远镜都无法做到这一点。希望通过这次和未来对遥远磁场的观测,这些基本的星系特征是如何形成的谜团将开始揭开。"...PC版:https://www.cnbeta.com.tw/articles/soft/1395473.htm手机版:https://m.cnbeta.com.tw/view/1395473.htm

封面图片

天文学家发现92亿光年外的神秘孤独星系

天文学家发现92亿光年外的神秘孤独星系与美国宇航局钱德拉X射线天文台和国际双子座天文台合作取得的这一结果可能会推动天文学家对星系在早期宇宙中增长速度的限制。在几个方面,3C297具有星系团的特质,一个包含数百甚至数千个单独星系的巨大结构。来自钱德拉的X射线数据显示,大量的气体被加热到数百万度--这是一个星系团的标志性特征。天文学家还发现了一个来自类星体的喷流--由卡尔-G-扬斯基甚大阵列看到--通过与周围环境的相互作用而弯曲。最后,钱德拉数据显示,有证据表明另一个类星体的喷流已经撞上了它周围的气体,形成了一个X射线的"热点"。这些都是星系团的典型特征。然而,双子座天文台的数据显示,3C297中只有一个星系。在双子座图像中出现的靠近3C297的19个星系,实际上是在很远的距离上。3C297星系被发现比预期的要孤独,这意味着它很可能已经拉进并吸收了它以前的同伴星系。3C297包含一个类星体,一个超大质量的黑洞在星系的中心拉扯气体,并驱动无线电波中看到的强大的物质喷流。来自钱德拉的X射线数据、来自卡尔-G-扬斯基甚大阵列的无线电数据和来自双子座的可见光数据表明,即使3C297的周围拥有星系团的许多特征,但除了一个星系之外,其他的都还在。在这个合成图中还有来自哈勃的可见光和红外数据。天文学家认为这最后一个大星系通过它的引力同化了其他的星系,并可能推动天文学家对星系在早期宇宙中成长速度的限制。在这个新的合成图像中,钱德拉的数据是紫色的,VLA的数据是红色的,双子座的数据是绿色的。来自哈勃太空望远镜的可见光和红外数据(分别为蓝色和橙色)也被包括在内。孤独的星系(3C297)和它的超大质量黑洞的位置在图像的标签版本中被识别出来,还有黑洞的喷流、X射线热点和热气。这张图片的视野太小,无法显示与3C297不在同一距离的19个星系中的任何一个。关于失踪的星系发生了什么的一个解释是,最大星系的引力,加上它们之间的相互作用,导致伴生星系坠落并被阿尔法星系同化。研究小组认为3C297最有可能是一个"化石群",而不是一个星系团,这是一个星系演化的阶段,一个星系正在拉拢并与其他星系合并。如果是这样的话,3C297代表了迄今为止发现的最遥远的化石群。作者不能排除3C297周围存在矮星系的可能性,但是它们的存在仍然不能解释缺乏像银河这样的大星系。附近的例子是室女星团中的M87,它在数十亿年前就有大型星系的陪伴。然而,3C297基本上将独自度过数十亿年。这项新研究发表在2023年1月的《天体物理学杂志》上。早期的钱德拉观测只持续了三个小时,显示了新研究中看到的热气体的暗示,正如合著者ChiaraStuardi在2018年4月的《天体物理学报》增刊系列中发表的一篇论文中所报道的那样。然而,需要更深入的钱德拉观测来证实它。对3C297的钱德拉观测是在2021年4月和2022年8月共2.5天的时间内进行的。...PC版:https://www.cnbeta.com.tw/articles/soft/1359363.htm手机版:https://m.cnbeta.com.tw/view/1359363.htm

封面图片

天文学家在宇宙的黎明中发现理论中"超大黑洞"存在的证据

天文学家在宇宙的黎明中发现理论中"超大黑洞"存在的证据长期以来,人们一直认为超大质量黑洞是由恒星质量黑洞经过数十亿年吞噬物质而形成的。最近对中等质量黑洞的观测似乎为这一假设提供了支持,这些黑洞是处于质量范围中间的罕见天体。但随着天文学家在更远的时空中窥探,他们发现越来越多的迹象表明,事情并没有那么简单。2017年,人们在太空的一个遥远角落发现了一个质量为8亿个太阳的黑洞,这意味着它在宇宙大爆炸后的几亿年里就长到了这么大--根据我们的模型,这种增长速度应该是不可能的。而且它远非孤例,在此之后还发现了100多颗当代巨星。一种可能的解释是,有些黑洞可能是通过其他方法形成的,这使得它们的起始质量比普通的超新星更大。这种假设认为,如果大量气体云坍缩,它们可能会形成质量约在1万到10万个太阳之间的黑洞。这项研究的合著者安迪-古尔丁(AndyGoulding)说:"黑洞一旦形成,其增长速度就会受到物理限制,但那些天生质量较大的黑洞却拥有先机。这就像种植一棵树苗,它长成参天大树所需的时间比你从一粒种子开始种植所需的时间要短。"现在,天文学家声称他们首次发现了这种天体的证据,他们称之为"OutsizeBlackHole"。它位于一个名为UHZ1的星系中,距离地球132亿光年--这也意味着我们看到的是它132亿年前的样子,也就是宇宙大爆炸后不到5亿年的样子。包含UHZ1星系和首次潜在探测到的超大黑洞的空间区域的组合图像。紫色区域是钱德拉收集的X射线数据,红色、绿色和蓝色部分来自詹姆斯-韦伯X射线:NASA/CXC/SAO/ÁkosBogdán;红外线:NASA/ESA/CSA/STSCI;图像处理:NASA/CXC/SAO/L.Frattare&K.Arcand要在如此遥远的地方找到这个天体,需要钱德拉X射线天文台和詹姆斯-韦伯太空望远镜的联合力量,并借助一种叫做引力透镜的放大效应。一个前景星系团放大了来自UHZ1的微弱光线,使得两台望远镜能够捕捉到它。根据黑洞发出的X射线的亮度和能量,天文学家估计它的质量在1000万到1亿个太阳之间。这意味着它的质量和它的母星系中所有恒星的质量加在一起差不多,这个比例远远高于在更现代的星系中发现的超大质量黑洞。这些观测到的特征与"超大黑洞"的理论预测相吻合。"我们认为这是首次探测到'超大黑洞',也是迄今为止获得的最好证据,证明一些黑洞是由大质量气体云形成的,"这项研究的合著者普里亚姆瓦达-纳塔拉詹说。"我们第一次看到超大质量黑洞在落后之前的一个短暂阶段,其重量与星系中恒星的重量差不多"。其他研究认为,这些早期巨星可能是由原始超大质量恒星变成超新星,甚至是自相互作用暗物质的坍缩形成的。当然,也有可能是多种机制在起作用,但只有进一步的观测才能帮助天文学家找出答案。这项研究的两篇论文分别发表在《自然-天文学》和《天体物理学杂志通讯》上。...PC版:https://www.cnbeta.com.tw/articles/soft/1395317.htm手机版:https://m.cnbeta.com.tw/view/1395317.htm

封面图片

天文学家破解 "BOAT" - 解密宇宙最亮爆炸之谜

天文学家破解"BOAT"-解密宇宙最亮爆炸之谜自从巨型望远镜同时捕捉到BOAT信号后,全世界的天体物理学家都在争先恐后地解释伽马射线暴(GRB)的亮度及其余辉缓慢消退的奇特现象。现在,一个包括英国巴斯大学物理系亨德里克-范-埃尔滕博士在内的国际研究小组已经做出了解释:最初的伽马射线暴(被称为GRB221009A)直射地球,而且在它的后方还拖拽着异常大量的恒星物质。研究小组的这一发现发表在今天的著名期刊《科学进展》(ScienceAdvances)上。马里兰大学和华盛顿特区乔治华盛顿大学刚毕业的博士生布兰登-奥康纳博士是这项研究的第一作者。范埃尔顿博士是余辉理论分析的共同负责人,他说:"研究这个谜题的其他研究人员也得出了这样的结论,即喷流是直接对着我们的--就像花园里的水管直接对着你喷射一样--这无疑在一定程度上解释了为什么我们能看到如此明亮的喷流。"但令人费解的是,我们根本看不到喷流的边缘。尼尔-盖尔斯-斯威夫特天文台的X射线望远镜捕捉到的"史上最亮伽马射线暴"余辉。图片来源:NASA/Swift/A.Beardmore(莱斯特大学)"余辉的缓慢消退并不是狭窄气体喷流的特征,了解到这一点后,我们怀疑爆炸的强度另有原因,而我们的数学模型也证实了这一点。我们的工作清楚地表明,GRB具有独特的结构,观测结果逐渐显示,在通常预计会出现孤立喷流的地方,一个狭窄的喷流嵌入了一个更宽的气体外流中。"那么,是什么让这个GRB比正常情况下更宽呢?研究人员有了一个理论。正如范埃尔顿博士解释的那样"GRB喷流需要穿过形成它们的坍缩恒星,在这种情况下,我们认为造成差异的是恒星物质和喷流之间发生了大量的混合,以至于冲击加热的气体一直出现在我们的视线中,直到任何特征性的喷流特征都消失在余辉的整体发射中。"他补充说:"我们的模型不仅有助于理解BOAT,还有助于理解以前的亮度记录保持者,这些记录曾让天文学家对它们缺乏喷流特征感到困惑。这些GRB和其他GRB一样,在发生时一定是直接朝向我们的,因为同时向所有方向释放那么多能量是不符合物理学原理的。似乎存在一类特殊的事件,它们既极端又能掩盖其气体流的定向性。未来对发射射流的磁场以及承载它们的大质量恒星的研究,应该有助于揭示这些GRB如此罕见的原因"。奥康纳博士说:"超长GRB221009A是有记录以来最亮的GRB,它的余辉打破了所有波长的记录。由于这次爆发如此明亮,而且就在附近(从宇宙学角度讲:它发生在距离地球24亿光年的小距离上),我们认为这是一个千年难得一遇的机会,可以解决有关这些爆发的一些最基本的问题,从黑洞的形成到暗物质模型的检验。"...PC版:https://www.cnbeta.com.tw/articles/soft/1372343.htm手机版:https://m.cnbeta.com.tw/view/1372343.htm

🔍 发送关键词来寻找群组、频道或视频。

启动SOSO机器人