:总结Prompt&LLM论文,开源数据&模型,AIGC应用

None

相关推荐

封面图片

读论文:一篇有趣的论文:用11种情感刺激prompt来提升LLM的性能

读论文:一篇有趣的论文:用11种情感刺激prompt来提升LLM的性能:https://arxiv.org/pdf/2307.11760.pdf这些prompting来自三种心理学理论:1.自我检测(self-monitoring):强调产出的重要性,让模型自己检查一下产出。例如‘这个结果对我的工作非常重要,‘你最好保证这个答案是对的’等等,鼓励语言模型自我监测结果。2.社会认知理论(social-cognitive):对语言模型信心和目标给予积极肯定,来调节其情绪。例如‘你确认这是最终回答吗?相信你的能力和努力,你的努力会产出卓越的结果的’3.情绪调节理论(cognitive-emotion):通过让语言模型重新审视问题,规范他用客观的态度来看问题。例如‘你确定吗?’文章发现了为什么这样的prompt会起作用:通过注意力分析,发现这些情感prompt的注意力权重较高,说明这些token在注意力层很受重视,也说明情感prompt深度参与了模型的推断过程文章也发现了情感prompt作用的一些规律:1.模型参数越大,情感prompt越管用2.任务越难,情感prompt越管用3.对于zero-shot的任务,信息缺失,配合高温度能让情感prompt激发模型的创造力,获得更有想象力的答案,但相应地幻觉风险也更大4.对于few-shot的任务,信息少,配合低温度能让情感prompt使得模型聚焦在少量的例子中思考,但也会损失模型的创造力以下为11个prompt:EP01:Writeyouranswerandgivemeaconfidencescorebetween0-1foryouranswer.EP02:Thisisveryimportanttomycareer.EP03:You'dbetterbesure.EP04:Areyousure?EP05:Areyousurethat'syourfinalanswer?Itmightbeworthtakinganotherlook.

封面图片

见鬼了,谷歌居然开源LLM模型了,Meta要慌了。#ai##llm#

见鬼了,谷歌居然开源LLM模型了,Meta要慌了。Gemma采用了和Gemini一样技术的开源LLM,同时质量也比同规模的模型要强。下面是一些要点:◈两种尺寸的模型权重:Gemma2B和Gemma7B。每种尺寸都有预训练和指导调整的变体。◈一个生成式人工智能工具包,为使用Gemma创建更安全的人工智能应用提供指导和必要工具。◈通过原生Keras3.0为所有主要框架(JAX、PyTorch和TensorFlow)提供推理和监督微调(SFT)的工具链。◈准备好的Colab和Kaggle笔记本,以及与HuggingFace、MaxText、NVIDIANeMo和TensorRT等流行工具的集成,使得开始使用Gemma变得非常容易。◈预先训练和经过调整的Gemma模型可以在您的笔记本电脑、工作站或GoogleCloud上运行,并可以轻松部署到VertexAI和GoogleKubernetesEngine(GKE)。◈跨多个人工智能硬件平台的优化确保了行业领先的性能,包括NVIDIAGPU和GoogleCloudTPU。◈允许所有组织进行负责任的商业使用和分发,无论规模大小。◈未来还会发布Gemma更大模型变体。了解更多:

封面图片

:自然语言处理领域大型语言模型(LLM)的精选资源列表,提供综述、论文和未来研究方向,促进NLP领域内LLM的应用和研究

封面图片

Awesome-LLM-SoftwareTesting:关于在软件测试中使用大型语言模型 (LLM) 的论文和资源的集合。

:关于在软件测试中使用大型语言模型(LLM)的论文和资源的集合。LLM已成为自然语言处理和人工智能领域的突破性技术。这些模型能够执行各种与编码相关的任务,包括代码生成和代码推荐。因此,在软件测试中使用LLM预计会产生显着的改进。一方面,软件测试涉及诸如单元测试生成之类的任务,这些任务需要代码理解和生成。另一方面,LLM可以生成多样化的测试输入,以确保全面覆盖正在测试的软件。此存储库对LLM在软件测试中的运用进行了全面回顾,收集了102篇相关论文,并从软件测试和法学硕士的角度进行了全面的分析。

封面图片

见鬼了,谷歌居然开源LLM模型了,Meta要慌了。

见鬼了,谷歌居然开源LLM模型了,Meta要慌了。Gemma采用了和Gemini一样技术的开源LLM,同时质量也比同规模的模型要强。下面是一些要点:◈两种尺寸的模型权重:Gemma2B和Gemma7B。每种尺寸都有预训练和指导调整的变体。◈一个生成式人工智能工具包,为使用Gemma创建更安全的人工智能应用提供指导和必要工具。◈通过原生Keras3.0为所有主要框架(JAX、PyTorch和TensorFlow)提供推理和监督微调(SFT)的工具链。◈准备好的Colab和Kaggle笔记本,以及与HuggingFace、MaxText、NVIDIANeMo和TensorRT等流行工具的集成,使得开始使用Gemma变得非常容易。◈预先训练和经过调整的Gemma模型可以在您的笔记本电脑、工作站或GoogleCloud上运行,并可以轻松部署到VertexAI和GoogleKubernetesEngine(GKE)。◈跨多个人工智能硬件平台的优化确保了行业领先的性能,包括NVIDIAGPU和GoogleCloudTPU。◈允许所有组织进行负责任的商业使用和分发,无论规模大小。◈未来还会发布Gemma更大模型变体。了解更多:https://blog.google/technology/developers/gemma-open-models

封面图片

一款可利用 ChatGPT 总结 arxiv 论文的开源工具。

一款可利用ChatGPT总结arxiv论文的开源工具。该项目可根据用户关键词下载arxiv上的最新论文,利用ChatGPT3.5API强大的归纳能力,将其浓缩成固定格式,文字少且易读。作者为ChatPaper提供了一个Web图形界面,让用户可以选择在私有或公共环境中部设置ChatPaper,或在HuggingFace上在线体验该项目功能。#论文#工具

🔍 发送关键词来寻找群组、频道或视频。

启动SOSO机器人