山脉是如何形成的

None

相关推荐

封面图片

山脉是如何形成的东南亚新闻全站导航万能超级搜索

封面图片

什么是学阀,学阀是如何形成的?via

封面图片

By:6000#frth#视频《论异形是如何形成的》#搞笑段子

封面图片

爱思|周玉亮:网络风暴是如何形成的,以及社交媒体上以讹传讹是如何产生的?

因为一个突发事件,迅速翻转,然后一不小心我和我创办的机构爱思青年就掉进网络暴力的漩涡之中,事情的发展非常简单,我尽可能做客观描述,不准确的地方请大家补充。

封面图片

揭开黑洞的磁性之谜:黑洞周围的"MAD"吸积是如何形成的?

揭开黑洞的磁性之谜:黑洞周围的"MAD"吸积是如何形成的?黑洞X射线双星MAXIJ1820+070的示意图,黑洞周围形成了一个磁捕获盘。他们发现的关键是观测到来自黑洞喷流的射电辐射和来自吸积流外部区域的光学辐射分别滞后于来自吸积流内部区域热气体(即热吸积流)的硬X射线约8天和17天。这些发现发表在8月31日的《科学》杂志上。这项研究由武汉大学的尤蓓副教授、浙江大学的曹新武教授和中国科学院上海天文台的严震研究员领导。黑洞X射线双星MAXIJ1820+070的多波长光曲线(显示亮度随时间的变化)黑洞捕获气体的过程被称为"吸积",落入黑洞的气体被称为吸积流。吸积流内部的粘性过程会有效释放引力势能,其中一部分能量会转化为多波长辐射。这种辐射可以被地面和太空望远镜观测到,让我们"看到"黑洞。然而,黑洞周围还有"看不见"的磁场。当黑洞吸积气体时,也会将磁场向内拖拽。以前的理论认为,随着吸积气体不断带来微弱的外部磁场,磁场会逐渐向吸积流的内部区域增强。吸积流向外的磁力增加,抵消了黑洞向内的引力。因此,在黑洞附近的吸积流内部区域,当磁场达到一定强度时,吸积物质就会被磁场困住,无法自由落入黑洞。这种现象被称为磁捕获盘。MAD理论多年前就已提出,并成功解释了一些与黑洞吸积有关的观测现象。然而,当时并没有直接的观测证据证明MAD的存在,MAD的形成和磁传输机制仍然是个谜。吸积流、磁场和喷流演化示意图除了几乎所有星系中心的超大质量黑洞之外,宇宙中还有更多恒星质量的黑洞。天文学家在银河系的许多双星系统中都探测到了恒星质量的黑洞。这些黑洞的质量通常是太阳的十倍左右。大多数时候,这些黑洞处于静止状态,发射极弱的电磁辐射。不过,它们偶尔也会进入爆发期,爆发期可以持续几个月甚至几年,产生明亮的X射线。因此,这类双星系统通常被称为黑洞X射线双星。在这项研究中,研究人员对黑洞X射线双星MAXIJ1820+070的爆发进行了多波长数据分析。他们观察到,硬X射线发射出现了一个峰值,8天后射电发射也出现了一个峰值。喷流的射电辐射与热吸积流的硬X射线之间如此长的延迟是前所未有的。这些观测结果表明,吸积盘外部区域的弱磁场被热气体带入内部区域,随着吸积率的降低,热吸积流的径向范围迅速扩大。热吸积流的径向范围越大,磁场的增幅就越大。这导致黑洞附近的磁场迅速增强,从而在硬X射线发射峰值出现大约8天后形成MAD。"我们的研究首次揭示了吸积流中的磁场传输过程和黑洞附近的MAD形成过程。这是磁捕获盘存在的直接观测证据,"该研究的第一作者和共同通讯作者YouBei副教授说。此外,研究小组还观测到来自吸积流外部区域的光学发射与来自热吸积流的硬X射线之间出现了前所未有的延迟(约17天)。通过对黑洞X射线双星爆发的数值模拟,研究人员发现当爆发接近尾声时,硬X射线的辐照会导致更多来自远外层区域的吸积物质由于不稳定性而向黑洞坠落。这导致吸积流外围区域出现光学耀斑,其峰值出现在来自热吸积流的硬X射线峰值之后约17天。该研究的共同通讯作者曹新武教授说:"由于黑洞吸积物理学的普遍性,不同质量尺度黑洞的吸积过程遵循相同的物理规律,因此这项研究将推进对不同质量尺度吸积黑洞的大尺度磁场形成、喷流动力和加速机制等相关科学问题的理解。"该研究的共同通讯作者阎真教授指出,在不久的将来,有望在更多的吸积黑洞系统中观测到与MAXIJ1820+070类似的现象。...PC版:https://www.cnbeta.com.tw/articles/soft/1381353.htm手机版:https://m.cnbeta.com.tw/view/1381353.htm

封面图片

哈勃最新观测结果揭示银河碰撞是如何引发恒星形成的

哈勃最新观测结果揭示银河碰撞是如何引发恒星形成的从这张哈勃太空望远镜拍摄的图片中可以看到,AM1054-325星系在邻近星系的引力作用下,从正常的薄饼状螺旋形状扭曲成了S形。这样做的一个后果是,新生的恒星群沿着一条拉长的潮汐尾迹形成,长达数千光年,就像一串珍珠。宾夕法尼亚州立大学的一位天文学家领导的一项新研究锁定了其中的12条潮汐尾迹,发现了425个星团,每个星团都有多达一百万颗新生恒星。图片来源:NASA、ESA、STScI、JayanneEnglish(马尼托巴大学)在一项新的研究中,宾夕法尼亚州立大学研究人员领导的研究小组利用美国国家航空航天局的哈勃太空望远镜对12个星系进行了观测,这些星系拥有长长的、像蝌蚪一样的潮汐尾迹,尾部的气体、尘埃和恒星都是在这种碰撞中产生的。研究小组在这些潮汐尾迹发现了425个新生恒星星团,每个星团包含多达100万颗新生恒星。宾夕法尼亚州立大学天文学和天体物理学教授、研究小组成员简-查尔顿(JaneCharlton)说:"星系合并时,气体云会发生碰撞和坍缩,从而形成一个高压环境,恒星就可能在这个环境中形成。这些合并的内部已经得到了很好的研究,但对于这些合并产生的碎片(如潮汐尾迹)中可能形成恒星的情况却知之甚少"。当星系相互作用时,引力潮汐力会拉出长长的气体和尘埃流,相互作用的星系之间的引力拉锯战把星系的旋臂拉得像太妃糖的形状一样,沿旋臂尾部的星团看起来就像一串珍珠。天线星系和老鼠星系就是两个具有这种潮汐尾迹的著名星系,它们都有狭长的手指状突起。在新的研究中,研究小组综合利用了新的观测数据和哈勃的档案数据,确定了12个潮汐尾迹内星团的年龄和质量。然后,他们利用绕地球运行的两台紫外线太空望远镜的数据确定了恒星形成的速度,其中一台搭载在现已退役的银河进化探测器(Galex)上,另一台搭载在尼尔-盖尔瑞斯-斯威夫特天文台(NeilGehrelsSwiftObservatory)上,该天文台的任务运行中心位于宾夕法尼亚州立大学。研究小组发现,许多潮汐尾迹星团都非常年轻--只有1000万年的历史。此外,这些星团似乎是以相同的速度沿着绵延数千光年的整个尾部形成的。他们在《皇家天文学会月刊》(MonthlyNoticesoftheRoyalAstronomicalSociety)上发表了他们的研究成果。"在尾部看到大量年轻天体令人惊讶。这告诉了我们很多关于星团形成效率的信息,"第一作者、弗吉尼亚州阿什兰市伦道夫-麦肯学院讲师兼基布尔天文台主任迈克尔-罗德鲁克说,他在研究时还是宾夕法尼亚州立大学的一名研究生。"有了潮汐尾尾迹,就会有条件建立起新一代恒星,否则这些恒星可能不会存在"。在合并之前,这些星系中含有大量的分子氢尘埃云,它们可能一直处于惰性状态。在碰撞过程中,这些云相互挤压和碰撞,氢被压缩到一定程度,从而引发了一场恒星诞生的风暴。据研究人员称,这些被挤出的星团的命运还不确定。它们可能在引力作用下保持完整,进化成球状星团,比如那些在银河系平面外运行的星团。或者,它们可能会分散开来,在螺旋星系周围形成一个恒星光环,或者被抛离出去,成为银河系间游荡的恒星。查尔顿说:"我们认为,潮汐的星团可能在宇宙早期更为常见,当时宇宙较小,星系碰撞更为频繁。"编译来源:ScitechDaily...PC版:https://www.cnbeta.com.tw/articles/soft/1418177.htm手机版:https://m.cnbeta.com.tw/view/1418177.htm

🔍 发送关键词来寻找群组、频道或视频。

启动SOSO机器人