什么是学阀,学阀是如何形成的?via

None

相关推荐

封面图片

山脉是如何形成的

封面图片

By:6000#frth#视频《论异形是如何形成的》#搞笑段子

封面图片

可怕的海底湖泊到底如何形成的 为什么掉入其中的生物无法逃脱?

可怕的海底湖泊到底如何形成的为什么掉入其中的生物无法逃脱?这部短片总时长只有12分钟多点,作者向我们展示了不同海域的海底世界,而且所有的镜头都是真一口气拍完,没有携带氧气设备,非常令人敬佩。不过,这部短片中有一个场景直到今天还被人质疑,我看到国内也有一些科普博主在质疑他们是在用拍摄技巧达到的效果。这个场景就是主角纪尧姆在海底的一个湖泊旁奔跑,他的每一个脚步都像是踩在海底的沙滩上一样,波浪拍打他的双脚就像真的在海边一样,令人难以置信。这对夫妻在接受媒体采访时表示过自己的短片所有场景都是在海底一口气拍完的,但是依然有人不相信,因为海底的“沙滩”,“海浪”和“湖泊”实在是太反直觉了。实际上,海底不仅有明显的湖泊,而且这些“湖泊”通常非常致命,那些不小心掉入其中的生物会无法逃脱,在里面被腌制成“木乃伊”。绝望热水浴缸,图源:OceanExplorationTrust/NOAA加拿大“绝望热水浴缸”关于“海底湖泊”,互联网上有一个比较出名的,那就是加拿大的“绝望热水浴缸”。之所以它会以“绝望”命名,是因为这个“湖泊”里面填满了腌制的螃蟹和其他海洋生物的遗体,它们掉入其中,直至死亡也无法逃脱,而且遗体保存得非常好。“绝望热水浴缸”说是“湖泊”,其实用“池塘”来形容可能会更好一点,因为它并不大。绝望热水浴缸的死螃蟹,图:OceanExplorationTrust它位于墨西哥湾海底1000米的地方,整个池塘的周长只有30.5米,而深度是3.7米,池子里的水在海底层次分明,非常突出,与我们在陆地上看到湖泊差不多。池塘的边缘被陡峭的“墙壁”包围,墙壁上覆盖着红色、黄色和白色的矿物流,而且墙壁有多处开口,可以看到池塘里的水正在向外流出。除此之外,一大群贻贝围在池塘周围,就像是我们在陆地海滩上看到的那样一样,这些贻贝有别于其它被腌制的海洋生物,它们是活的,池塘就是它们的栖息地。我之所以要提“绝望热水浴缸”,是因为它是非常典型的海底湖泊,它有着典型的形成原因,典型的生态系统,以及典型的动物木乃伊。海底之所以形成这种一眼就看出来的、层次分明的“湖泊”,原因就在于“湖泊”里水的密度与外界的水密度不同。这有点像你把油倒入一杯水中,油因为密度小,它会浮在上面,这时候如果所有的水都正好在一个洼地里的话,那么我们就会看到油的底部有一个水的湖泊。在海底也是一样的,只要一个海底盆地中水的密度变得更大,那么这些大密度的水就会沉淀在海底盆地中。另一方面,由于水的密度和溶解物的不同,盆地里的水对光的散射也会不同,所以就出现层次分明的海底湖泊。其实,海底湖泊里的水在海底与海水的相互作用,和我们陆地湖泊里的水与空气的作用有着惊人的相似,我们可以看到海底湖泊的表面和清澈的“海岸线”,以及当有东西接触到海底湖泊表面时,它也会产生涟漪和波浪。自然界就是这么的神奇,《一口气环游世界》的片段应该不是通过技术手段,或者其它方式达到的效果,那就是实景。那么,到底是什么让海底湖泊里的水变得密度更大呢?其实答案很简单,就是海底的各种盐。我们前面提到过,“绝望热水浴缸”有着海底湖泊典型的形成原因,确实是这样的。“绝望热水浴缸”是2015年发现的,当时研究人员在墨西哥湾深处调查冷泉,这个池塘正好是一处冷泉喷射点的所在地。冷泉指的是海底碳氢化合物逸出的地方,这些区域并不是冷的,它的温度和周围的海水是一样的,“冷泉”只是相对于“海底热泉”来说的。海底湖泊形成原因,AI翻译冷泉的所在地如果正好是一个海底洼地的话,那么该区域就经常会伴随着海底湖泊的出现。海底的洼地往往会有厚厚的盐沉积物,这些盐是数百万年前古海中水蒸发形成的,它如果是平静的待在海底,也会导致盆地里水的盐度增加,不过它可能不会形成是一个明显的湖泊。但如果伴随着冷泉喷涌出的话,那么它会大大提高盆地里水的盐度和溶解物,让其变得层次分明,“绝望热水浴缸”里的水的盐度是周围海水的4倍。那些掉入其中的海洋动物之所以无法逃脱,除了因为海底湖泊高盐度之外,那里氧气水平还极低,有时候还会包含有一些有毒的硫化物。为什么海底湖泊旁有贻贝?我们前面提到过“绝望热水浴缸”旁边生活着贻贝,其实其它海底湖泊周围也经常都会生活着密密麻麻的贻贝。贻贝可以适应海底湖泊的低氧和高盐,但是真正让它们在这种地方繁荣的是因为一些细菌。海底湖泊通常存在冷泉,而冷泉喷发的碳氢化合物会吸引一些古老的细菌,比如甲烷营养菌,它们在冷泉喷射的地方繁荣。那些贻贝正是和这些甲烷营养菌共生,它们将细菌“饲养”在自己的鳃中,然后不停过滤海水获取甲烷,供这些细菌食用,而它们自己则以细菌的代谢产物为食。不过,似乎大部分海底湖泊中,贻贝都是生活在边缘地带,并没有往核心发展,可能越往核心,生存条件会变得越来越苛刻吧。在海底湖泊的生态系统中,还有一个有趣的成员,就是一些以细菌为食得海底蜗牛,它们会通过感知贻贝改变的水来找到它们。最后当然,并不是所有海底湖泊的形成都和“绝望热水浴缸”一样,还至少有一种方式也会形成海底湖泊,那就是伴随着结冰形成的海底湖泊。因为冰形成过程中会释放盐分,并导致剩余水中的盐分浓度不断升高,随着结冰和融化的过程,海底湖泊可能就会出现。这类海底湖泊通常出现发生在南极洲海岸,而这类的生态系统与我们前文提到的也不一样。...PC版:https://www.cnbeta.com.tw/articles/soft/1435667.htm手机版:https://m.cnbeta.com.tw/view/1435667.htm

封面图片

爱思|周玉亮:网络风暴是如何形成的,以及社交媒体上以讹传讹是如何产生的?

因为一个突发事件,迅速翻转,然后一不小心我和我创办的机构爱思青年就掉进网络暴力的漩涡之中,事情的发展非常简单,我尽可能做客观描述,不准确的地方请大家补充。

封面图片

揭开黑洞的磁性之谜:黑洞周围的"MAD"吸积是如何形成的?

揭开黑洞的磁性之谜:黑洞周围的"MAD"吸积是如何形成的?黑洞X射线双星MAXIJ1820+070的示意图,黑洞周围形成了一个磁捕获盘。他们发现的关键是观测到来自黑洞喷流的射电辐射和来自吸积流外部区域的光学辐射分别滞后于来自吸积流内部区域热气体(即热吸积流)的硬X射线约8天和17天。这些发现发表在8月31日的《科学》杂志上。这项研究由武汉大学的尤蓓副教授、浙江大学的曹新武教授和中国科学院上海天文台的严震研究员领导。黑洞X射线双星MAXIJ1820+070的多波长光曲线(显示亮度随时间的变化)黑洞捕获气体的过程被称为"吸积",落入黑洞的气体被称为吸积流。吸积流内部的粘性过程会有效释放引力势能,其中一部分能量会转化为多波长辐射。这种辐射可以被地面和太空望远镜观测到,让我们"看到"黑洞。然而,黑洞周围还有"看不见"的磁场。当黑洞吸积气体时,也会将磁场向内拖拽。以前的理论认为,随着吸积气体不断带来微弱的外部磁场,磁场会逐渐向吸积流的内部区域增强。吸积流向外的磁力增加,抵消了黑洞向内的引力。因此,在黑洞附近的吸积流内部区域,当磁场达到一定强度时,吸积物质就会被磁场困住,无法自由落入黑洞。这种现象被称为磁捕获盘。MAD理论多年前就已提出,并成功解释了一些与黑洞吸积有关的观测现象。然而,当时并没有直接的观测证据证明MAD的存在,MAD的形成和磁传输机制仍然是个谜。吸积流、磁场和喷流演化示意图除了几乎所有星系中心的超大质量黑洞之外,宇宙中还有更多恒星质量的黑洞。天文学家在银河系的许多双星系统中都探测到了恒星质量的黑洞。这些黑洞的质量通常是太阳的十倍左右。大多数时候,这些黑洞处于静止状态,发射极弱的电磁辐射。不过,它们偶尔也会进入爆发期,爆发期可以持续几个月甚至几年,产生明亮的X射线。因此,这类双星系统通常被称为黑洞X射线双星。在这项研究中,研究人员对黑洞X射线双星MAXIJ1820+070的爆发进行了多波长数据分析。他们观察到,硬X射线发射出现了一个峰值,8天后射电发射也出现了一个峰值。喷流的射电辐射与热吸积流的硬X射线之间如此长的延迟是前所未有的。这些观测结果表明,吸积盘外部区域的弱磁场被热气体带入内部区域,随着吸积率的降低,热吸积流的径向范围迅速扩大。热吸积流的径向范围越大,磁场的增幅就越大。这导致黑洞附近的磁场迅速增强,从而在硬X射线发射峰值出现大约8天后形成MAD。"我们的研究首次揭示了吸积流中的磁场传输过程和黑洞附近的MAD形成过程。这是磁捕获盘存在的直接观测证据,"该研究的第一作者和共同通讯作者YouBei副教授说。此外,研究小组还观测到来自吸积流外部区域的光学发射与来自热吸积流的硬X射线之间出现了前所未有的延迟(约17天)。通过对黑洞X射线双星爆发的数值模拟,研究人员发现当爆发接近尾声时,硬X射线的辐照会导致更多来自远外层区域的吸积物质由于不稳定性而向黑洞坠落。这导致吸积流外围区域出现光学耀斑,其峰值出现在来自热吸积流的硬X射线峰值之后约17天。该研究的共同通讯作者曹新武教授说:"由于黑洞吸积物理学的普遍性,不同质量尺度黑洞的吸积过程遵循相同的物理规律,因此这项研究将推进对不同质量尺度吸积黑洞的大尺度磁场形成、喷流动力和加速机制等相关科学问题的理解。"该研究的共同通讯作者阎真教授指出,在不久的将来,有望在更多的吸积黑洞系统中观测到与MAXIJ1820+070类似的现象。...PC版:https://www.cnbeta.com.tw/articles/soft/1381353.htm手机版:https://m.cnbeta.com.tw/view/1381353.htm

封面图片

哈勃最新观测结果揭示银河碰撞是如何引发恒星形成的

哈勃最新观测结果揭示银河碰撞是如何引发恒星形成的从这张哈勃太空望远镜拍摄的图片中可以看到,AM1054-325星系在邻近星系的引力作用下,从正常的薄饼状螺旋形状扭曲成了S形。这样做的一个后果是,新生的恒星群沿着一条拉长的潮汐尾迹形成,长达数千光年,就像一串珍珠。宾夕法尼亚州立大学的一位天文学家领导的一项新研究锁定了其中的12条潮汐尾迹,发现了425个星团,每个星团都有多达一百万颗新生恒星。图片来源:NASA、ESA、STScI、JayanneEnglish(马尼托巴大学)在一项新的研究中,宾夕法尼亚州立大学研究人员领导的研究小组利用美国国家航空航天局的哈勃太空望远镜对12个星系进行了观测,这些星系拥有长长的、像蝌蚪一样的潮汐尾迹,尾部的气体、尘埃和恒星都是在这种碰撞中产生的。研究小组在这些潮汐尾迹发现了425个新生恒星星团,每个星团包含多达100万颗新生恒星。宾夕法尼亚州立大学天文学和天体物理学教授、研究小组成员简-查尔顿(JaneCharlton)说:"星系合并时,气体云会发生碰撞和坍缩,从而形成一个高压环境,恒星就可能在这个环境中形成。这些合并的内部已经得到了很好的研究,但对于这些合并产生的碎片(如潮汐尾迹)中可能形成恒星的情况却知之甚少"。当星系相互作用时,引力潮汐力会拉出长长的气体和尘埃流,相互作用的星系之间的引力拉锯战把星系的旋臂拉得像太妃糖的形状一样,沿旋臂尾部的星团看起来就像一串珍珠。天线星系和老鼠星系就是两个具有这种潮汐尾迹的著名星系,它们都有狭长的手指状突起。在新的研究中,研究小组综合利用了新的观测数据和哈勃的档案数据,确定了12个潮汐尾迹内星团的年龄和质量。然后,他们利用绕地球运行的两台紫外线太空望远镜的数据确定了恒星形成的速度,其中一台搭载在现已退役的银河进化探测器(Galex)上,另一台搭载在尼尔-盖尔瑞斯-斯威夫特天文台(NeilGehrelsSwiftObservatory)上,该天文台的任务运行中心位于宾夕法尼亚州立大学。研究小组发现,许多潮汐尾迹星团都非常年轻--只有1000万年的历史。此外,这些星团似乎是以相同的速度沿着绵延数千光年的整个尾部形成的。他们在《皇家天文学会月刊》(MonthlyNoticesoftheRoyalAstronomicalSociety)上发表了他们的研究成果。"在尾部看到大量年轻天体令人惊讶。这告诉了我们很多关于星团形成效率的信息,"第一作者、弗吉尼亚州阿什兰市伦道夫-麦肯学院讲师兼基布尔天文台主任迈克尔-罗德鲁克说,他在研究时还是宾夕法尼亚州立大学的一名研究生。"有了潮汐尾尾迹,就会有条件建立起新一代恒星,否则这些恒星可能不会存在"。在合并之前,这些星系中含有大量的分子氢尘埃云,它们可能一直处于惰性状态。在碰撞过程中,这些云相互挤压和碰撞,氢被压缩到一定程度,从而引发了一场恒星诞生的风暴。据研究人员称,这些被挤出的星团的命运还不确定。它们可能在引力作用下保持完整,进化成球状星团,比如那些在银河系平面外运行的星团。或者,它们可能会分散开来,在螺旋星系周围形成一个恒星光环,或者被抛离出去,成为银河系间游荡的恒星。查尔顿说:"我们认为,潮汐的星团可能在宇宙早期更为常见,当时宇宙较小,星系碰撞更为频繁。"编译来源:ScitechDaily...PC版:https://www.cnbeta.com.tw/articles/soft/1418177.htm手机版:https://m.cnbeta.com.tw/view/1418177.htm

🔍 发送关键词来寻找群组、频道或视频。

启动SOSO机器人