理大团队发现两种治疗超级细菌新方案 有良好疗效

理大团队发现两种治疗超级细菌新方案有良好疗效理工大学科研团队发现两种治疗超级细菌「肺炎克雷伯菌」的新方案,并显示出良好疗效和临床应用潜力。理大团队于2017年,发现病原体「肺炎克雷伯菌」的新变异株,有多重耐药性和超强毒力,即使人体受感染,亦可能无法治愈而死亡,死亡率高达25%至45%。其后团队于该细菌的新变异株设计疗法上取得突破,确定病原体入侵宿主后,触发「细胞激素风暴」的信号途径,诱导病人激发不受控制的免疫细胞反应,最终引发致命感染性休克。研究团队实验发现「乙醯水杨酸」类免疫抑制剂,即广泛用于舒缓轻至中度疼痛和炎症,俗称「阿斯匹灵」的成药,有效抑制「细胞激素风暴」爆发,避免出现败血性休克,显著降低感染患者死亡率。另外,团队亦成功从市面已研发的药物中,筛选用于治疗爱滋病的药物zidovudine,再配合抗生素rifampicin,成功根除病原体,令病人不必经过漫长新药开发和审批周期,可更快受惠。2023-06-2011:05:57

相关推荐

封面图片

科学家发现应对抗生素耐药性细菌的新武器

科学家发现应对抗生素耐药性细菌的新武器耐抗生素病原体的一个例子是肺炎克雷伯氏菌,这是一种在医院里常见的细菌,以其毒性著称。如果没有有效的治疗方案,我们可能会看到肺炎和沙门氏菌等疾病的重新出现,这些疾病曾经很容易用抗生素治疗。日内瓦大学(UNIGE)的研究人员发现,乙去氧尿啶(edoxudine),一种在20世纪60年代开发的抗疱疹分子,可以破坏克雷伯氏菌的保护性表面,使其更容易被免疫细胞所消灭。研究人员的发现最近发表在PLOSONE杂志上。肺炎克雷伯氏菌是一种可以引起呼吸道、尿道和身体其他部位严重感染的细菌。肺炎克雷伯氏菌导致许多呼吸道、肠道和泌尿道感染。由于它对大多数常见的抗生素有抗药性,而且毒力很强,它的一些菌株对40%到50%的受感染者来说是致命的。现在迫切需要开发新的治疗分子来对付它。它是医院获得性感染的一个常见原因,对免疫系统较弱的人特别危险。肺炎克雷伯氏菌对许多抗生素具有抗药性,使其难以治疗。领导这项研究的UNIGE医学院细胞生理和代谢系教授PierreCosson解释说:"自20世纪30年代以来,医学一直依赖抗生素来摆脱致病细菌。但其他方法也是可能的,其中包括试图削弱细菌的防御系统,使它们无法再逃避免疫系统。这一途径似乎更有希望,因为肺炎克雷伯氏菌的毒性主要源于其逃避免疫细胞攻击的能力。"为了确定细菌是否被削弱,UNIGE的科学家们使用了一个具有令人惊讶的特点的实验模型:变形虫Dictyostelium。这种单细胞生物通过捕捉和摄取细菌为食,使用与免疫细胞用来杀死病原体的机制相同。"我们对这种变形虫进行了基因改造,以便它能够告诉我们它所遇到的细菌是否具有毒性。皮埃尔-科森解释说:"这个非常简单的系统然后使我们能够测试数以千计的分子,并确定那些能够降低细菌毒性的分子。"削弱细菌而不杀死它们开发一种药物是一个漫长而昂贵的过程,没有结果的保证。因此,UNIGE的科学家们选择了一种更快、更安全的策略:审查现有药物以确定可能的新治疗适应症。研究小组评估了已经上市的数百种药物对肺炎克雷伯氏菌的影响,这些药物有广泛的治疗适应症。一种为防治疱疹而开发的药物被证明是特别有希望的。通过改变保护细菌不受外部环境影响的表面层,这种药理学产品使其变得脆弱。研究人员说:"与抗生素不同,乙去氧尿啶不会杀死细菌,这限制了产生抗药性的风险,这是这种抗病毒策略的一个主要优势。"尽管这种治疗方法在人类身上的有效性还有待证实,但这项研究的结果令人鼓舞:乙去氧尿啶甚至对肺炎克雷伯氏菌的最强毒株也有作用,而且其浓度比治疗疱疹的浓度低。皮埃尔-科森总结说:"充分削弱细菌而不杀死它们是一种微妙的策略,但从短期和长期来看,它可能被证明是一种胜利。"...PC版:https://www.cnbeta.com.tw/articles/soft/1338061.htm手机版:https://m.cnbeta.com.tw/view/1338061.htm

封面图片

港大研发新方案治疗中期肝癌 近五成病人肿瘤先缩后除

港大研发新方案治疗中期肝癌近五成病人肿瘤先缩后除港大医学院研发医治肝癌的新方案,以治疗不能透过手术切除的中期肝癌,能令近五成肝癌病人达至肿瘤「先缩后除」的根治效果。港大医学院临床医学学院外科学系临床教授陈智仁表示,现时只有大约三成肝癌病人适合以手术切除肿瘤,其余病人透过药物或介入治疗,当中只有一成人完全有效。新方案是透过接受肝动脉栓塞化学疗法控制肿瘤,其后再接受立体定向放射治疗,再持续施以免疫疗法,目的是将肿瘤缩小至可用手术割除。临床医学学院外科学系及临床肿瘤学系团队,招募33名合资格病人接受治疗新方案,55%病人接受治疗后转为适合接受手术,42%肿瘤细胞全部坏死,其后两年半跟进覆诊显示,病人的存活率高达超过九成。陈智仁表示,大部分病人接受治疗6个月内都得到治疗效果,研究团队计划将治疗方案,扩大至中期肝癌兼肝功能较差的病人,提高接受肝脏移植的机会。2023-01-1112:55:56

封面图片

澳大成功研发细菌仿生纳米药可提升肿瘤治疗效果

澳大成功研发细菌仿生纳米药可提升肿瘤治疗效果#澳门大学澳门大学中华医药研究院副教授王瑞兵的研究团队开发了大肠杆菌外膜囊泡包被的超分子纳米粒前体作为细菌仿生纳米药物,可靶向治疗实体瘤。该研究成果已刊登于国际顶级综合性学术期刊《科学进展》(ScienceAdvances)。近年来,因为其高度生物相容性,长循环和特定组织的富集作用,活细胞作为药物载体受到越来越多的关注。由于细胞载体制剂的体外制备涉及复杂耗时的内源性细胞的提取和分选...https://www.gcs.gov.mo/detail/zh-hant/N22EPs4Yy6

封面图片

新的纳米颗粒设计可能会改善mRNA疫苗对癌症的治疗效果

新的纳米颗粒设计可能会改善mRNA疫苗对癌症的治疗效果疫苗通过让身体做好对抗细菌或病毒等病原体的准备,帮助预防感染。大多数传统疫苗含有减弱或死亡的细菌或病毒,以触发免疫反应。然而,mRNA疫苗(例如COVID-19疫苗)的工作原理是引入一段与病毒外部的蛋白质相对应的mRNA,从而产生抗体并标记病毒以进行破坏。一旦产生,抗体就会保留在体内,因此如果免疫系统再次暴露于病原体,它可以快速做出反应。现在,约翰·霍普金斯大学医学院的研究人员进行的一项新研究可能找到了一种改善mRNA疫苗递送以治疗传染性和非传染性疾病的方法。当使用mRNA疫苗治疗癌症等非传染性疾病时,面临的挑战是将材料传递给大量树突状细胞,树突状细胞是一种特殊类型的免疫细胞,可教导免疫系统(特别是T细胞)寻找并摧毁癌细胞。该研究的通讯作者乔丹·格林(JordanGreen)表示:“免疫系统的设计目的是通过放大反应来发挥作用,树突状细胞会教导其他免疫细胞在体内寻找什么。”制造更强效的疫苗需要携带mRNA的纳米颗粒到达、进入树突状细胞并在其中表达。表达后,mRNA会降解,由此产生的免疫反应持续时间更长。COVID-19mRNA疫苗包含由脂质(一种脂肪酸)制成的纳米颗粒,注射到肌肉中。但是,肌肉中的树突状细胞相对较少。将mRNA疫苗注射到血液中也会导致输送问题,因为疫苗往往会直接进入肝脏,并在那里被分解。因此,研究人员将目光投向了一个树突状细胞数量远远多于的器官:脾脏。格林说:“我们的目标是开发一种不会直接发送到肝脏的纳米颗粒,它可以有效地教导免疫系统细胞寻找并摧毁适当的目标。”在测试了多种材料后,研究人员决定将其mRNA包裹在基于聚合物的纳米颗粒中,其中亲水分子和疏水分子的比例恰到好处,使其能够进入目标细胞。这些聚合物含有对特定组织类型具有亲和力的分子,这里是脾脏。此外,纳米颗粒中添加了辅助剂或佐剂以激活树突状细胞。他们在小鼠身上测试了他们的新型纳米颗粒结构,发现它避开了肝脏,并被脾细胞吸收,其水平比mRNA本身高出约50倍。纳米颗粒到达的脾细胞中近80%是目标树突状细胞。在经过基因工程改造的小鼠中,当纳米颗粒传递其mRNA内容物时,免疫细胞会发出红光,研究人员发现,脾脏中5%至6%的树突状细胞成功吸收、打开并处理了纳米颗粒。这种现象在树突状细胞中比在其他免疫细胞中更容易观察到。然后纳米粒子生物降解成安全的副产品。证明新的纳米颗粒能够成功地靶向脾脏的树突状细胞之后,研究人员为其配备了免疫治疗药物,并再次在小鼠身上进行了测试。他们发现,一半的结直肠癌小鼠模型在接受两次注射后长期存活,而接受其他含有免疫治疗药物的纳米颗粒制剂或单独免疫治疗药物治疗后,只有10%至30%的存活率。当幸存的小鼠被给予额外的结直肠癌细胞时,它们都无需额外治疗即可存活,这向研究人员表明,它们的纳米颗粒提供了长期免疫反应,可防止癌症复发。他们还发现,治疗21天后,60%的细胞杀伤T细胞识别并攻击结直肠癌细胞。研究人员在患有黑色素瘤的小鼠模型中发现了类似的反应,其中大约一半的同类型T细胞准备好攻击黑色素瘤细胞。Green说:“纳米颗粒输送系统能够创建一支能够识别癌症相关抗原的T细胞大军。这种新的纳米颗粒输送系统可能会改善传染病疫苗的接种方式,并且也可能为治疗癌症开辟一条新途径。”该研究发表在《PNAS》杂志上。...PC版:https://www.cnbeta.com.tw/articles/soft/1368037.htm手机版:https://m.cnbeta.com.tw/view/1368037.htm

封面图片

研究人员发现一种治疗超级细菌感染的潜在新方法

研究人员发现一种治疗超级细菌感染的潜在新方法这项研究由高威大学的JamesPO'Gara教授和MerveSZeden博士领导,最近发表在mBio杂志上。微生物学教授JamesO'Gara说。"这一发现很重要,因为它揭示了用青霉素类药物治疗MRSA感染的潜在新方法,而青霉素类药物仍然是最安全和最有效的抗生素。"照片显示MRSA生长在两个琼脂平板的表面,一个没有鸟苷(左),一个有鸟苷(右),在这些平板上浸泡了抗生素。抗生素盘周围的清除区表明MRSA被杀死。资料来源:高威大学抗生素耐药性(AMR)危机是对人类健康的最大威胁之一,像MRSA这样的超级细菌给全球医疗资源带来了巨大负担。高威大学的微生物学研究小组表明,当青霉素类抗生素与作为DNA构建块的嘌呤结合时,MRSA可以被更有效地被杀灭。高威大学的博士生AaronNolan和高威大学生物和化学科学学院的MerveSZeden博士资料来源:戈尔韦大学Zeden博士说:"嘌呤核苷、腺苷、黄嘌呤和鸟苷是糖版的DNA构件,我们的工作表明,它们干扰了细菌细胞中的信号系统,而这些信号系统是抗生素抗性所必需的。"由嘌呤衍生的药物已经被用于治疗一些病毒感染和应对癌症。亚伦-诺兰是高威大学的博士生,是该论文的共同第一作者。他说。"寻找使超级细菌对目前许可的抗生素重新敏感的新方法是解决AMR危机的努力的一个关键部分。我们的研究表明,嘌呤核苷有可能使MRSA对青霉素类抗生素重新敏感"。...PC版:https://www.cnbeta.com.tw/articles/soft/1343921.htm手机版:https://m.cnbeta.com.tw/view/1343921.htm

封面图片

无糖食品中的人工甜味剂被发现可以杀死耐抗生素的细菌

无糖食品中的人工甜味剂被发现可以杀死耐抗生素的细菌这些讨厌的细菌是近年来医务人员最恼火的一些问题。这些细菌是鲍曼不动杆菌和铜绿假单胞菌,分别以引发肺炎和败血症而闻名。它们一直对抗生素有抗药性,使它们几乎无法治疗。这些耐抗生素的细菌一直是如此致命,以至于世界卫生组织将它们加入了"优先病原体"名单,这是一份急需新的抗生素治疗的病原体名单,因为它们对免疫系统受损的人构成了风险。不过,有了这个新发现,科学家们可能最终在这场持续的战斗中获得了优势。发表在《分子医学》上的这项研究发现,像糖精、醋磺酰胺-K和甜蜜素这样的人工甜味剂能抑制抗生素耐药菌的生长。特别是安赛蜜-K,证明在防止这些细菌发展生物膜方面特别有效,生物膜可以保护它们不受抗生素的影响。总的来说,这些甜味剂在减少细菌对普通抗生素的耐药性方面显示出有效性,使其更容易有效和高效地治疗这些细菌,即使使用较小剂量的抗生素。而且,由于这些人工甜味剂在大多数饮食和无糖食品中都很活跃,它们已经被广泛使用。麦卡锡说,开发新的抗生素往往需要数年甚至数十亿美元的时间。因此,在许多人用来喝咖啡的甜味剂中发现一种能够削弱抗生素耐药性细菌的化合物是令人兴奋的,也是治疗败血症和肺炎的一个巨大进步。像败血症和肺炎背后的细菌往往能迅速适应和应对药物,使它们对抗生素特别具有抗药性。这种抗药性在人类和动物身上自然发生,但当过度开药时,我们只是在升级这个问题。能够打击这些耐抗生素的细菌,最终可以帮助突破我们所知的一些最大的病原体威胁。...PC版:https://www.cnbeta.com.tw/articles/soft/1333719.htm手机版:https://m.cnbeta.com.tw/view/1333719.htm

🔍 发送关键词来寻找群组、频道或视频。

启动SOSO机器人