Biohub和斯坦福的科学家研究出一种基于铁蛋白的新冠纳米颗粒疫苗——Delta-C70-Ferritin-HexaPro(DC

Biohub和斯坦福的科学家研究出一种基于铁蛋白的新冠纳米颗粒疫苗——Delta-C70-Ferritin-HexaPro(DCFHP)。DCFHP-alum可以涵盖所有已知新冠变种,并且所能引起的抗体反应比现有mRNA疫苗强100倍。37˚C下储存14天后依然是稳定的。在初次免疫一年后的强化免疫中也能引起强烈的抗原反应。DCFHP-alum可以在非人灵长类动物中产生强效、持久、广谱的中和抗体。如果能证实它在人体内也能产生同样强效的抗体,或许新冠病毒将和天花一样成为历史。这项研究背后的金主是扎克伯格。https://doi.org/10.1101/2022.12.25.521784投稿:@zaihuabot群聊:@zaihuachat频道:@testflightcn

相关推荐

封面图片

斯坦福研发最新疫苗,能覆盖所有毒株,抗体反应比现有mRNA疫苗强100倍

斯坦福研发最新疫苗,能覆盖所有毒株,抗体反应比现有mRNA疫苗强100倍Biohub和斯坦福的科学家研究出一种基于铁蛋白的新冠纳米颗粒疫苗——Delta-C70-Ferritin-HexaPro(DCFHP)。DCFHP-alum可以涵盖所有已知新冠变种,并且所能引起的抗体反应比现有mRNA疫苗强100倍。在37˚C下储存14天后依然是稳定的。在初次免疫一年后的强化免疫中也能引起强烈的抗原反应。DCFHP-alum可以在非人灵长类动物中产生强效、持久、广谱的中和抗体。如果能证实它在人体内也能产生同样强效的抗体,或许新冠病毒将和天花一样成为历史。这项研究背后的金主是扎克伯格。

封面图片

科学家们增强基于蛋白质的COVID-19疫苗的效果 将免疫反应提高25倍

科学家们增强基于蛋白质的COVID-19疫苗的效果将免疫反应提高25倍具有讽刺意味的是,一些疫苗需要自己的"助推器"。一种被称为佐剂的成分被添加到疫苗中,以帮助引起更强大的免疫反应,更好地训练身体来对抗病原体。科学家们报告说,与单独注射疫苗相比,一种物质能将小鼠对实验性COVID-19疫苗的免疫反应提高25倍。今天(2022年8月31日)发表在《ACS传染病》杂志上的一篇新论文描述了这项研究的细节。尽管在美国授权的第一批COVID-19疫苗应用了最先进的mRNA基因技术,但使用病原体的蛋白质这一久经考验的策略可以生产出制造成本更低、更容易储存的疫苗。到目前为止,美国食品和药物管理局(FDA)只批准了一种由Novavax生产的针对SARS-CoV-2的蛋白质疫苗。然而,许多目前可用的针对其他疾病的接种疫苗依赖于蛋白质或蛋白质的碎片,这些针剂含有佐剂以提高其有效性。科学家们已经发现,源自α-半乳糖甘油酰胺(αGC)的分子,一种来自海洋海绵的化合物可以充当佐剂。它们通过刺激一小部分免疫细胞群来发挥作用,这些免疫细胞对防御身体的病毒感染非常重要。RuiLuo、ZhengLiu和他们的同事已经设计出一种αGC的版本,以显著提高基于蛋白质的COVID-19疫苗所引起的免疫反应。该小组制作了四种αGC的类似物。他们将每一种加入到含有SARS-CoV-2尖峰蛋白的实验性疫苗中,该病毒利用尖峰蛋白来感染细胞。小鼠在29天内被注射了三次,研究人员跟踪了它们的免疫反应,直到第35天。为了测量佐剂的效果,科学家们仔细研究了免疫功能的各个方面,包括免疫系统消除病原体的两种方式:通过T细胞(直接杀死患病细胞)和抗体(抓住入侵微生物的免疫蛋白)。这四种物质都没有提高T细胞的反应,但它们都让免疫系统产生了干扰病毒的能力大得多的抗体。被称为αGC-CPOEt的类似物质催生了具有最大中和能力的抗体--比没有佐剂的疫苗所能引起的抗体大25倍。据研究人员称,这些结果表明,αGC-CPOEt值得进一步研究,作为一种潜在的佐剂来对抗COVID-19和其他传染病。PC版:https://www.cnbeta.com/articles/soft/1310917.htm手机版:https://m.cnbeta.com/view/1310917.htm

封面图片

科学家破解 COVID-19 疫苗引发的致命血栓副作用

科学家破解COVID-19疫苗引发的致命血栓副作用腺病毒感染后VITT和VITT类疾病中抗PF4抗体的共同指纹新研究表明,疫苗诱发血栓(VITT)和普通感冒感染引起的类似疾病所涉及的危险的PF4抗体具有相同的分子结构,这对未来疫苗开发和疾病管理具有重要意义。弗林德斯大学和全球专家开展的新研究加深了我们对疫苗诱发免疫性血小板减少症和血栓形成(VITT)的认识。在2021年COVID-19大流行的高峰期,VITT被认为是一种与腺病毒载体疫苗(尤其是牛津-阿斯利康疫苗)相关的新病症。研究发现,VITT是由一种异常危险的血液自身抗体引起的,这种抗体针对一种名为血小板因子4(或PF4)的蛋白质。在2023年的另一项研究中,来自加拿大、北美、德国和意大利的研究人员描述了一种几乎完全相同的疾病,这种疾病也存在同样的PF4抗体,在某些病例中,这种抗体在自然感染腺病毒(普通感冒)后会导致死亡。弗林德斯大学研究人员王晶晶博士和弗林德斯大学教授汤姆-戈登(TomGordon)(南澳大利亚州病理学免疫学负责人)于2022年领导了一项先前的研究,破解了PF4抗体的分子密码,并确定了一个与称为IGLV3.21*02的抗体基因有关的遗传风险因素。弗林德斯大学免疫学研究人员JingJingWang博士和TomGordon教授。资料来源:弗林德斯基金会现在,弗林德斯小组与这一国际研究小组合作,发现腺病毒感染相关的VITT和传统的腺病毒媒介VITT中的PF4抗体具有相同的分子指纹或特征。弗林德斯大学研究员王博士是这篇发表在著名的《新英格兰医学杂志》上的新文章的第一作者,他说,这项研究还将对改进疫苗开发产生影响。戈登教授解释说:"这些发现使用了弗林德斯大学开发的一种针对血液抗体的全新方法,表明病毒和疫苗结构上有一个共同的触发因子,会引发病理pF4抗体。事实上,这些疾病产生致命抗体的途径几乎完全相同,而且具有相似的遗传风险因素。我们的研究结果具有重要的临床意义,即从VITT中吸取的经验教训适用于腺病毒(一种普通感冒)感染后血凝的罕见病例,并对疫苗开发产生影响。"编译来源:ScitechDailyDOI:10.1056/NEJMc2402592...PC版:https://www.cnbeta.com.tw/articles/soft/1432490.htm手机版:https://m.cnbeta.com.tw/view/1432490.htm

封面图片

科学家们开发出对所有20种已知亚型流感病毒均有效的mRNA疫苗

科学家们开发出对所有20种已知亚型流感病毒均有效的mRNA疫苗研究人员在今天发表在《科学》杂志上的一篇论文中描述了这种"多价"疫苗,它使用了辉瑞公司和Moderna公司SARS-CoV-2疫苗中使用的相同信使核糖核酸(mRNA)技术。实现这些COVID-19疫苗的这种mRNA技术是宾夕法尼亚大学的先驱。在动物模型中的测试表明,该疫苗极大地减少了疾病的迹象,并保护动物免于死亡,即使动物接触到与制作疫苗时不同的流感病毒株。该研究的高级作者、佩雷尔曼医学院微生物学教授ScottHensley博士说:"这里的想法是让人们对不同的流感菌株有一个基线水平的免疫记忆,这样,当下一次流感大流行发生时,疾病和死亡将大大减少。"Hensley和他的实验室与mRNA疫苗先驱德鲁·魏斯曼博士的实验室合作开展了这项研究,他是宾夕法尼亚州医学会罗伯茨家族疫苗研究教授和疫苗研究主任。流感病毒周期性地引起大流行,造成巨大的死亡人数。其中最著名的是1918-19年的"西班牙流感"大流行,它在全世界至少造成数千万人死亡。流感病毒可以在鸟类、猪和其他动物体内循环,当其中一个毒株跳到人类身上并获得变异,使其更适合在人类中传播时,大流行就会开始。目前的流感疫苗只是"季节性疫苗",可以防止最近流行的毒株,但不能防止新的、大流行的毒株。宾夕法尼亚大学医学院的研究人员采用的策略是使用免疫原--一种能刺激免疫反应的抗原--从所有已知的流感亚型中进行接种以引发广泛的免疫保护。预计该疫苗不会提供完全防止病毒感染的"消毒"免疫力。相反,新的研究显示,该疫苗会引起了一种记忆性免疫反应,可以迅速适应新的大流行病毒株,大大减少了感染引起的严重疾病和死亡。"这将与第一代SARS-CoV-2mRNA疫苗相媲美,后者针对冠状病毒的原始毒株,"Hensley说。"针对后来的变种,如Omicron,这些原始疫苗并没有完全阻断病毒感染,但它们继续提供持久的保护,防止严重疾病和死亡"。实验性疫苗在注射并被接受者的细胞吸收后,开始产生一种关键的流感病毒蛋白--血凝素蛋白的副本,用于所有20种流感血凝素亚型--H1至H18的甲型流感病毒,以及另外两种乙型流感病毒。Hensley说:"对于传统疫苗来说,对所有这些亚型进行免疫将是一个重大挑战,但使用mRNA技术则相对容易。"在小鼠身上,mRNA疫苗激发了高水平的抗体,这些抗体至少保持了四个月,并且对所有20种流感亚型都有强烈反应。此外,该疫苗似乎相对不受之前流感病毒接触的影响,而这可能会影响对传统流感疫苗的免疫反应。研究人员观察到,无论动物之前是否接触过流感病毒,小鼠的抗体反应都很强烈和广泛。Hensley和他的同事们目前正在设计人体临床试验,他说。研究人员设想,如果这些试验获得成功,该疫苗可能有助于激发所有年龄组的人(包括幼儿)对所有流感亚型的长期免疫记忆,这种疫苗可以大大减少感染严重流感的机会。原则上,同样的多价mRNA策略可以用于其他具有大流行潜力的病毒,包括冠状病毒。这项研究得到了美国国家过敏和传染病研究所的支持。...PC版:https://www.cnbeta.com.tw/articles/soft/1333757.htm手机版:https://m.cnbeta.com.tw/view/1333757.htm

封面图片

科学家解密艾滋病毒的防御系统 创新疫苗策略大有可为

科学家解密艾滋病毒的防御系统创新疫苗策略大有可为HIV-1病毒颗粒(粉红色/褐黄色)从慢性感染的H9细胞(茶色)的一个片段中萌发和复制的透射电子显微镜照片。颗粒处于不同的成熟阶段;弧形/半圆形是开始形成的不成熟颗粒,但仍是细胞的一部分。未成熟颗粒的形态会慢慢转变为成熟形态,并表现出典型的"圆锥形或球形核心"。图片拍摄于马里兰州德特里克堡的NIAID综合研究设施(IRF)。图片来源:NIAID艾滋病病毒的基因多种多样,因此难以用疫苗对其进行靶向治疗,但bNAbs可以克服这一障碍,因为它们能与病毒中即使发生变异也保持不变的部分结合。基因靶向是一种刺激免疫系统的方法,它能引导幼稚(前体)B细胞发育成能产生bNAbs的成熟B细胞。一类名为10E8的bNAbs是开发HIV疫苗的优先选择,因为它能中和特别广泛的HIV变种。10E8bNAb与艾滋病毒表面糖蛋白gp41的一个保守区域结合,该区域参与了艾滋病毒进入人类免疫细胞的过程。由于gp41的关键区域隐藏在HIV表面的凹陷缝隙中,因此设计一种免疫原--一种用于疫苗中、能引起特定免疫系统反应的分子--来刺激10E8bNAb的产生一直是一项挑战。之前的疫苗免疫原没有产生具有物理结构的bNAbs,无法到达gp41并与之结合。为了应对这一挑战,研究人员在纳米颗粒上设计了免疫原,模仿gp41的特定部分的外观。他们用这些免疫原为猕猴和小鼠接种疫苗,引起了10E8B细胞前体的特异性反应,诱导出的抗体显示出成熟为bNAbs的迹象,可以到达隐藏的gp41区域。当他们在小鼠体内使用mRNA编码的纳米颗粒时,也观察到了类似的反应。研究人员还发现,同样的免疫原产生的B细胞能成熟产生另一种名为LN01的gp41定向bNAb。最后,他们在实验室对人类血液样本进行分析后发现,10E8类bNAb前体自然存在于没有感染艾滋病病毒的人体内,而且他们的免疫原能与具有10E8类特征的人类幼稚B细胞结合并将其分离出来。这些观察结果表明,小鼠和猕猴的免疫数据很有希望转化为人类的免疫数据。编译来源:ScitechDaily...PC版:https://www.cnbeta.com.tw/articles/soft/1433325.htm手机版:https://m.cnbeta.com.tw/view/1433325.htm

封面图片

新冠终结者来了?斯坦福研发新疫苗:比mRNA强百倍 覆盖所有毒株

新冠终结者来了?斯坦福研发新疫苗:比mRNA强百倍覆盖所有毒株而且更重要的是,它可以涵盖所有已知的变种。如果能证实它在人体内也能产生同样强效的抗体,或许,新冠病毒将和天花一样,在人类社会中成为历史。顺便一提,这项研究背后的金主爸爸,就是小扎。终结新冠的疫苗,要来了?自从新冠疫情爆发以来,科学家们已经在疫苗的研究上取得了长足的进展。数据显示,在新冠爆发的第一年里,大规模的疫苗接种避免了超过1400万人的死亡。但是,现在全世界仍然对疫苗有着迫切的需求,据世界卫生组织估计,全球有将近10亿人仍未接种SARS-CoV-2疫苗。另外,疫苗的成本普遍偏高,低温存储和运输都增加了它的成本,让很多人无法承受。而且,疫苗通过诱导或感染所提供的免疫力,会随着时间的推移而减弱;同时,新冠病毒属于mRNA单链病毒,非常容易发生变异,从而逃过疫苗的保护作用。因此,我们非常需要一种能为所有SARS-CoV-2变种(VOCs)提供更持久免疫力的疫苗,来为全世界的人口(包括儿童和婴儿)来提供保护。现在,这个美好的愿望很有可能成为现实了。来自Biohub和斯坦福的研究人员发现了一种基于铁蛋白的蛋白质纳米粒子疫苗——Delta-C70-Ferritin-HexaPro(DCFHP)。他们发现,当与氢氧化铝作为唯一的佐剂(DCFHP-alum)配制时,新疫苗可在非人灵长类动物(nonhumanprimates,NHPs)中,引发针对已知变种(包括OmicronBA.4/5、BQ.1等)以及SARS-CoV-1的中和抗体,而且效果持久。而在初次免疫一年后的强化免疫中,DCFHP-alum也能引起强烈的抗原反应。此外,比起很多新冠疫苗,这种疫苗的保存条件并不苛刻。测试结果显示,DCFHP-alum的效力可以在超过标准室温的温度下,保持至少14天。研究者认为,DCFHP-alum不仅可以在之后用作一年一次的加强针,并且对于儿童(包括婴儿)来说也十分安全。为什么是蛋白质纳米颗粒疫苗?与亚单位疫苗相比,蛋白质纳米颗粒疫苗更容易被抗原呈递的树突状细胞所吸收,而且纳米颗粒促进了抗原的多价呈递,促进了受体的聚集和随后的B细胞激活。目前,这种基于铁蛋白的纳米粒子疫苗,已经显示出对SARS-CoV-2和其他病毒糖蛋白的强大体液免疫反应,并且在临床试验中也具有较高的安全性。在此之前,这组研究人员曾尝试过一种基于蛋白质的纳米颗粒疫苗——S∆C-Fer。S∆C-Fer含有一个突变的弗林蛋白酶切割位点,和2-脯氨酸(2P)的预融合稳定替代物(在FDA批准的SARS-CoV-2mRNA疫苗中也有这种替代物)。尤其重要的是,S∆C-Fer还删除了刺突蛋白胞外域(spikeectodomain)C端的70个氨基酸残基。刺突(S)是一种在SARS-CoV-2表面表达的结构糖蛋白,是病毒宿主和组织嗜性的关键决定因素。SARS-CoV-2S在ACE2受体结合后介导病毒进入靶细胞,因此是潜在的治疗药物靶点删除的这些残基,包含着免疫显性的、线性(非构象)的表位。在康复期的新冠血浆中,这些表位时常被抗体作为靶点。相对于其他疫苗,如果从铁蛋白纳米颗粒上去除了这些免疫显性的线性表位,和修改后的刺突蛋白的多价呈现,就会大大改善诱发的抗体对小鼠的中和效力。将S∆C-Fer升级为DCFHP在本次实验中,研究人员采用的是S∆C-Fer的升级版本,——Delta-C70-Ferritin-HexaPro,或者可以称为DCFHP。他们用上述的四个脯氨酸替代物来补充了2P稳定替代物,创造出了一个六个脯氨酸替代物(HexaPro)的版本。DCFHP示意图,包括将S∆C-Fer转化为DCFHP所做的修改上述工作表明,相对于2P的版本,HexaProSARS-CoV-2刺突蛋白具有更高的稳定性和更好的表达。另外,在温度变化的情况下,DCFHP的稳定性也比S∆C-FER更强。实验结果表明,DCFHP-alum在小鼠体内引起了针对SARS-CoV-2变种的强大而持久的免疫反应。此外,通过对小鼠的免疫情况,研究人员发现,DCFHP-alum在4℃至37℃的温度范围内,至少可以保持14天的稳定性。因此可以推测:DCFHP-alum疫苗无需冷藏。DCFHP的三维重建冷冻电镜密度图随后,研究人员又在恒河猴体内进行了实验。在用DCFHP-alum对恒河猴进行了两剂量的肌肉注射免疫后,可以产生持久、强大的中和抗体,包括OmicronBA.4/537和BQ.1,同时还产生了平衡的Th1和Th2免疫反应。最令人吃惊的是,对于不同的SARS-CoV-1假病毒变种,这些非人灵长类动物(NHP)的抗体也都显示出强大而持久的中和活性。在大约1年后,研究人员用第三剂DCFHP-alum给恒河猴打了加强针,也在它们体内产生了强大的、广谱的中和抗体反应。也就是说,DCFHP-alum不仅可以作用于新冠病毒的各类变种,并且可以在全世界范围内推广新冠疫苗的接种。这种方案非常经济有效,以后每年打一次加强针即可。实验结果令人惊喜为了研究DCFHP-alum疫苗的稳定性,研究人员将样品在4˚C、27˚C或37˚C储存不同的时间,并在单剂量小鼠免疫研究中评估了这些储存样品的免疫原性。值得注意的是,在假病毒中和试验中,DCFHP-alum疫苗在所有温度和储存期都保持了类似的免疫原性。因此研究人员的结论是,DCFHP-alum在37˚C下储存两周后依然是稳定的。研究人员选取了年龄在3至9岁之间的10只雄性恒河猴,并把它们分成了两组(A、B)。首先在第0天同时对两组恒河猴进行初次免疫,然后在第21天(A组)或第92天(B组)接种加强针(图3A)。根据加强免疫14天的评估,更晚接种加强针的恒河猴可以产生更好的中和抗体(图3C和D);平均而言,B组对不同变种的中和反应相对于A组增加了约4倍。在进一步研究中发现,所有的非人灵长类动物对原始毒株的中和抗体反应都持续了至少250天(图4A和C)。同样,B组的大多数动物对BA.4/5和序列不同的SARS-CoV-1保持了可检测的中和效力,持续时间约为一年(图4D),其滴度通常高于A组(图4B)。为了明确DCFHP-alum是否可以作为每年接种的疫苗,研究人员在第381天给所有恒河猴再次注射了加强针。结果显示,A组和B组的恒河猴都表现出强烈的免疫反应。对原始毒株、BA.4/5、SARS-CoV-1和BQ.1的平均NT50值分别约为10^4、10^3.5、10^3和10^3(图5A-H)。总结一下研究人员表示,DCFHP-alum疫苗虽然是基于最早的原始毒株序列,但却能在非人灵长类动物中,引发对SARS-CoV-2变种和SARS-CoV-1强大且广谱的中和抗体反应(包括针对BA.4/5、BQ.1和SARS-CoV-1),并且持续时间可以超过250天。由于DCFHP-alum对非人灵长类动物进行初次免疫,可以对新冠变种提供非常广泛的保护,因此DCFHP-alum可以作为一种重要的初防疫苗用于未接种或未受感染的人群。同时,作为常规儿童免疫计划的一部分,铝盐佐剂出色的安全性在过去几十年中已经得到证实,并且也是婴儿疫苗常用的成分。因此,DCFHP-alum或许也是帮助婴儿中建立起针对SARS-CoV-2的免疫印记的一种理想方式。此外,基于CHO的细胞系可以实现新疫苗的低成本、大规模生产,并且还可以在超过标准室温的温度下稳定保存两周以上。综上所述,研究人员认为,DCFHP-alum是开发新疫苗的优秀候选。...PC版:https://www.cnbeta.com.tw/articles/soft/1336751.htm手机版:https://m.cnbeta.com.tw/view/1336751.htm

🔍 发送关键词来寻找群组、频道或视频。

启动SOSO机器人