细菌防御机制研究为治疗人类疾病提供新思路

细菌防御机制研究为治疗人类疾病提供新思路(早报讯)美国一项新研究发现,在对抗外来入侵时,细菌与人类细胞有着非常相似的防御机制,对细菌有关机制的研究或将为治疗包括自身免疫性疾病在内的诸多人类疾病提供新思路。新华社报道,美国科罗拉多大学博尔德分校日前发布新闻公报,介绍了这项发表在英国《自然》杂志上的研究。科学家曾利用细菌防御病毒入侵的一种机制开发出“基因剪刀”CRISPR基因编辑技术。科罗拉多大学博尔德分校与加州大学圣迭戈分校研究人员,在这项研究中聚焦一种人体和细菌都有的蛋白质——cGAS。这种蛋白质在人体和细菌防御病毒入侵时发挥重要作用,cGAS以更简单的形式存在于细菌中。研究人员利用冷冻电子显微镜技术及其他遗传和生化实验,研究了细菌中cGAS相关反应过程,发现泛素转移酶可帮助cGAS保护细胞免受病毒攻击,并找到了负责开关cGAS作用机制的蛋白质。在人体中,泛素转移酶控制着免疫信号及其他涉及细胞的关键过程。研究人员说,这项研究表明,人类与细菌并非全然不同,而是有着打开和关闭免疫通路所需的相同核心机制。与人类细胞相比,细菌更易在基因上操纵和研究。研究细菌有助进一步了解人体运作方式,开发出治疗人类疾病的方法。

相关推荐

封面图片

新研究发现针对失智症的生物防御机制

新研究发现针对失智症的生物防御机制日本一项新研究称,发现了机体针对失智症的一种天然防御机制,为医学界未来治疗失智症和其他中枢神经疾病提供新思路。新华社星期天(7月30日)报道,日本京都大学发布新闻公报说,研究员对比野生小鼠和有TRPA1通道基因缺损的模型小鼠后发现,在大脑中数量最多的神经胶质细胞——星形胶质细胞(astrocyte)中表达的TRPA1通道的活性化能促进白血病抑制因子的产生,从而抑制导致认知功能障碍的脑白质损伤。也就是说,在星形胶质细胞中表达的TRPA1的活性化作为针对痴呆症的生物防御机制发挥着作用。TRPA1通道基因缺损的模型小鼠比野生小鼠更早出现脑白质损伤及认知功能障碍。TRPA1是一种通道蛋白,已知可以让细胞对有毒化合物的存在做出反应,并激活人体内的一系列细胞,包括大脑和心脏细胞。星形胶质细胞则是哺乳动物脑部广泛分布的一种细胞,为神经元提供营养和保护,参与多种生理过程。新闻公报说,高血压、糖尿病、血脂异常等慢性疾病会导致人们出现动脉硬化和血管狭窄等情况,使大脑进入慢性低血流量状态,进而出现脑白质损伤,最终可能在神经细胞死亡前的阶段出现认知功能障碍(失智症)等神经功能异常。但是这一发病机制仍有很多未解开的谜团,机体所具有的防御机制迄今也不为人所知。而京都科研人员的研究成功,有望帮助研发失智症以及其他中枢神经疾病的治疗药物。这一研究成果已刊登在美国《科学进展》杂志上。

封面图片

以色列研发出针对致命细菌的mRNA疫苗

以色列研发出针对致命细菌的mRNA疫苗(早报讯)mRNA(信使核糖核酸)疫苗大多针对病毒而不是细菌。以色列特拉维夫大学日前发表声明说,大学人员参与的研究团队成功研发出一款针对鼠疫耶尔森菌的mRNA疫苗,该技术或将有助解决耐抗生素细菌的问题。新华社报道,根据特拉维夫大学声明,研究在动物模型中进行,所有接种这种mRNA疫苗的动物都完全实现了免受鼠疫耶尔森菌的侵害。这一新技术可快速开发出有效针对细菌的疫苗,以对抗由耐抗生素细菌引发的流行性疾病。相关论文已发表在美国《科学进展》杂志上。声明说,目前的mRNA疫苗——包括部分冠病疫苗,能有效预防病毒感染,但对细菌无效。病毒依赖宿主细胞繁殖,将自己的mRNA分子插入人体细胞,并以人体细胞为工厂,基于自己的遗传物质生产病毒蛋白,实现自我复制。mRNA疫苗就模拟了这一过程,科学家在实验室合成出同样的mRNA分子,将其包裹在脂质纳米颗粒中。接种疫苗后,脂质会黏附于人体细胞,细胞开始生产病毒蛋白质,免疫系统提前熟悉了这些蛋白质后,未来接触到真的病毒就可以发挥保护作用。细菌的情况则完全不同:它们无须依赖人体细胞制造自身蛋白质。而且,由于人类和细菌的进化完全不同,即使基于相同的基因序列,细菌制造的蛋白质也可能与人类细胞的蛋白质有所差异。声明援引领衔这项研究的特拉维夫大学博士埃多·科恩的话说:“研究人员曾尝试在人体细胞中合成细菌蛋白质,但接触这些蛋白质后人体内抗体水平偏低,并且普遍缺乏保护性免疫作用。”为解决这一问题,研究人员成功开发出分泌细菌蛋白质的方法,使得免疫系统识别出了疫苗中可引发免疫反应的细菌蛋白质,并提高了细菌蛋白质的稳定性,确保其不会在体内过快分解,从而获得了完全的免疫反应。声明说,由于过去几十年人类过度使用抗生素,许多细菌已产生对抗生素的耐药性。耐抗生素细菌已对人类健康构成一定威胁,开发出一种新型疫苗或将为这一全球性问题提供答案。

封面图片

日本新研究探明一种治疗乳腺癌机制

日本新研究探明一种治疗乳腺癌机制日本一项新研究发现,在乳腺癌药物诱导癌细胞老化的过程中有一种蛋白质发挥了重要作用,探明这个机制有助于开发治疗乳腺癌的新方法。新华社报道,日本京都大学等机构研究人员日前在国际学术期刊《通讯-生物学》上发表论文说,两种主要治疗乳腺癌的药物阿霉素和阿贝西利能够让乳腺癌细胞老化,在相关过程中有一种名为“ATP6AP2”的蛋白质发挥了重要作用。研究发现,这种蛋白质能够维持细胞内的酸碱度,在经相关药物治疗的癌细胞中,ATP6AP2的浓度下降,使癌细胞出现酸化等变化,从而导致癌细胞老化,帮助控制癌症。京都大学发布的新闻公报说,这项成果有望推动研发针对乳腺癌的新疗法以及防止乳腺癌复发的方法。但研究人员也表示,目前尚不清楚细胞内酸碱度的变化如何进一步影响免疫系统,接下来将展开相关研究以更好地探索治疗癌症的方法。2023年12月3日9:44PM

封面图片

破解细胞密码:蛋白质折叠与疾病疗法的新见解

破解细胞密码:蛋白质折叠与疾病疗法的新见解马萨诸塞大学阿默斯特分校(UMassAmherst)的一项突破性研究破解了附着在蛋白质上的糖是如何引导蛋白质正确折叠的,为治疗由蛋白质错误折叠引起的疾病提供了可能。研究小组的方法揭示了一种特定酶在折叠过程中发挥的关键作用。这种蛋白质(红色)被糖(蓝色和绿色)糖苷化。资料来源:马萨诸塞大学阿默斯特分校揭开丝氨酸的神秘面纱这项发表在《分子细胞》(MolecularCell)杂志上的研究探讨了与多种疾病有关的丝氨酸蛋白家族成员。这项研究首次探讨了附着在丝蛋白上的碳水化合物的位置和组成如何确保它们正确折叠。从肺气肿、囊性纤维化到阿尔茨海默病等严重疾病,都可能因细胞对蛋白质折叠的监督出错而导致。找出负责高保真折叠和质量控制的糖蛋白代码,可能是针对多种疾病的药物疗法的一种很有前景的方法。科学家们曾一度认为,DNA是支配生命的唯一代码,一切都受DNA的四个构建模块--A、C、G和T--如何组合和重组的支配。但近几十年来,人们逐渐认识到还有其他代码在起作用,尤其是在人体细胞的蛋白质工厂--内质网(ER)--这个膜封闭的腔室中,蛋白质折叠的起始点就是内质网。约有7000种不同的蛋白质在ER中成熟,占人体所有蛋白质的三分之一。这些分泌蛋白统称为"分泌体"--负责人体从酶到免疫和消化系统的一切功能,必须正确形成才能使人体正常运作。蛋白伴侣在蛋白质折叠中的作用被称为"伴侣"的特殊分子有助于将蛋白质折叠成最终形状。它们还能帮助识别折叠不完全正确的蛋白质,为其重新折叠提供额外的帮助,或者,如果它们折叠错误得无可救药,则在它们造成损害之前将其锁定并加以破坏。然而,作为细胞质量控制部门的一部分,伴侣系统本身有时也会失效,一旦失效,就会给我们的健康带来灾难性的后果。发现ER中基于碳水化合物的伴侣系统要归功于麻省大学阿默斯特分校生物化学和分子生物学教授、本文资深作者之一丹尼尔-希伯特(DanielHebert)在20世纪90年代作为博士后开展的开创性工作。"我们现在拥有的工具,包括阿默斯特大学应用生命科学研究所的糖蛋白组学和质谱分析技术,让我们能够回答25年来一直悬而未决的问题,"Hebert说。"这篇新论文的第一作者凯文-盖伊(KevinGuay)所做的事情是我刚开始工作时梦寐以求的。"在这些悬而未决的问题中,最迫切的问题是:伴侣如何知道7000种不同的类似折纸的蛋白质何时正确折叠?理解蛋白质质量控制的创新我们现在知道,答案涉及一种名为UGGT的"ER守门员"酶,以及大量与蛋白质氨基酸序列中特定位点相连的碳水化合物标签,即N-糖。盖伊正在完成马萨诸塞大学阿默斯特分校分子细胞生物学项目的博士学业,他重点研究了两种特殊的哺乳动物蛋白质,即α-1抗胰蛋白酶和抗凝血酶。他和他的合著者利用CRISPR编辑细胞,修改了ER伴侣网络,以确定N-聚糖的存在和位置如何影响蛋白质折叠。他们观察了疾病变体被ER守门员UGGT识别的过程,为了更仔细地观察,他们利用质谱技术开发了一系列创新的糖蛋白组学技术,以了解蛋白质表面的聚糖发生了什么变化。他们发现,UGGT酶会在特定位置用糖"标记"折叠错误的蛋白质。这是一种代码,然后伴侣可以通过读取这种代码来确定折叠过程中哪里出错以及如何修复。影响和未来方向盖伊说:"这是我们第一次能够看到UGGT在人体细胞制造的蛋白质上添加糖以进行质量控制的位置。我们现在有了一个平台,可以扩展我们对糖标签如何将蛋白质送入进一步质量控制步骤的理解,我们的工作表明,UGGT是靶向药物治疗研究的一个很有前景的途径。""这项研究最令人兴奋的地方在于",马萨诸塞大学阿默斯特分校生物化学与分子生物学杰出教授、论文共同作者之一莱拉-吉拉什(LilaGierasch)说,"我们发现聚糖在ER中充当了蛋白质折叠的代码。UGGT所扮演角色的发现为未来了解并最终治疗由错误折叠蛋白质导致的数百种疾病打开了一扇大门"。参考文献《ER伴侣使用蛋白质折叠和质量控制糖代码》,作者:KevinP.Guay、HaipingKe、NathanP.Canniff、GracieT.George、StephenJ.Eyles、MalaiyalamMariappan、JosephN.Contessa、AnneGershenson、LilaM.Gierasch和DanielN.Hebert,2023年12月4日,《分子细胞》。DOI:10.1016/j.molcel.2023.11.006编译来源:ScitechDaily...PC版:https://www.cnbeta.com.tw/articles/soft/1403363.htm手机版:https://m.cnbeta.com.tw/view/1403363.htm

封面图片

以色列研究:揭示皮肤癌的脑转移机制

以色列研究:揭示皮肤癌的脑转移机制(早报讯)以色列等国研究人员发现了黑色素瘤这种皮肤癌转移到大脑的机制,并找到了抑制癌转移的方法。新华社报道,据介绍,约90%的黑色素瘤患者会在晚期发生脑转移。但大脑是一个受较好保护的器官,血脑屏障通常可以阻止有害物质进入大脑。因此医学界一直在探索皮肤癌的脑转移原因。以色列特拉维夫大学等机构的研究人员使用来自皮肤、血液和脑的组织,以及相关癌细胞,在实验室中模拟了它们在人体内的相互作用。结果发现,黑色素瘤这种皮肤癌细胞进入血液后,会释放出名为CCR2和CCR4的蛋白质,而大脑中的星形胶质细胞会分泌一种名为MCP-1的蛋白质。它们之间的相互作用会导致癌细胞进入大脑。研究人员发现用两种方法可以抑制癌细胞的脑转移:一是利用抗体和小分子药物阻断蛋白质MCP-1发挥作用,二是用基因编辑技术敲除癌细胞中与蛋白质CCR2和CCR4相关的基因。实验室研究显示,这两种方法均可抑制癌细胞的脑转移,根据干预阶段的不同,可将肿瘤生长抑制60%至80%。上述抑制皮肤癌的脑转移方法尚未经过临床试验。但是,研究人员说,其中使用的抗体和小分子药物,已经在治疗其他疾病的临床试验中通过了安全性测试,因此有望在此基础上较快开发出可临床应用的疗法。这份研究论文日前在美国《临床检查杂志·观察》上发表。发布:2022年9月26日4:17PM

封面图片

新研究发现与免疫系统疾病有关的关键蛋白质

新研究发现与免疫系统疾病有关的关键蛋白质T细胞善于识别引发免疫反应的外来分子(抗原),并做出有针对性的反应来消灭细菌和病毒等病原体。这项发表在《免疫学杂志》上的研究调查了STAP-1如何影响免疫反应。研究人员发现,STAP-1是一种中间体,能促进细胞内不同蛋白质之间的交流,并使信号从一个分子传递到另一个分子。领导这项研究的北海道大学教授TadashiMatsuda说:"我们的发现为T细胞活化和免疫失调的分子机制提供了宝贵的见解。我们发现,STAP-1在调节免疫反应,尤其是在T细胞的活化和功能方面发挥着重要作用。"STAP-1基因敲除(KO)小鼠脊髓的炎症反应不如野生型(WT)小鼠严重(上图)。与此同时,STAP-1KO小鼠的脊髓与WT小鼠的脊髓相比,脱髓鞘现象(即神经周围的髓鞘脱落)较少(下图)。图片来源:KotaKagohashi等人《免疫学杂志》。2024年2月5日T细胞需要两个信号才能被激活并启动免疫反应。第一个信号涉及识别由其他细胞(称为抗原递呈细胞)递呈的抗原。抗原由T细胞受体识别,T细胞受体是一种存在于T细胞表面的蛋白质复合物。第二个信号由抗原递呈细胞上的分子提供的协同刺激信号组成。研究人员发现,STAP-1能帮助T细胞交流和响应信号,尤其是由T细胞受体触发的信号。缺乏STAP-1的T细胞难以正常接收和传递信号,从而减少了某些称为细胞因子的免疫分子的产生。细胞因子可导致炎症或自身免疫性疾病,在这种疾病中,免疫系统会错误地攻击健康的组织和器官。研究小组还发现,STAP-1与其他参与T细胞信号传导的蛋白质相互作用,形成了一个复杂的网络,有助于调节T细胞的活性。他们观察到,在多发性硬化症和哮喘等疾病模型中,缺乏STAP-1的细胞炎症程度较低,这表明STAP-1可能参与了这些疾病的发展。这些发现标志着我们在了解免疫系统调控方面迈出了重要一步。未来的研究可以在这项工作的基础上,探索STAP-1作为治疗靶点治疗免疫相关疾病的潜力。编译自:ScitechDaily...PC版:https://www.cnbeta.com.tw/articles/soft/1423355.htm手机版:https://m.cnbeta.com.tw/view/1423355.htm

🔍 发送关键词来寻找群组、频道或视频。

启动SOSO机器人