中国科学家实现51个超导量子比特簇态制备

中国科学家实现51个超导量子比特簇态制备中国科学家成功实现了51个超导量子比特簇态制备和验证,刷新了所有量子系统中真纠缠比特数目的世界纪录。据新华社报道,记者从中国科学院获悉,该研究由中国科学技术大学潘建伟院士、朱晓波、彭承志团队和北京大学袁骁等科研人员合作完成,相关成果7月12日在国际学术期刊《自然》在线发表。“这项工作将量子系统中真纠缠比特数目的纪录由原先的24个大幅刷新至51个,充分展示了超导量子计算体系优异的可扩展性。”潘建伟说,在此基础上,研究团队首次实现了基于测量的变分量子算法,为基于测量的量子计算方案走向实用奠定基础。

相关推荐

封面图片

国际首次!我国科学家实现光子的分数量子反常霍尔态

国际首次!我国科学家实现光子的分数量子反常霍尔态据新华社,日前,中国科学技术大学潘建伟院士团队,利用“自底而上”的量子模拟方法,在国际上首次实现了光子的分数量子反常霍尔态,为高效开展更多、更新奇的量子物态研究提供了新路径,助力推进“第二次量子革命”。分数量子反常霍尔效应备受学术界关注,处于分数量子反常霍尔态的物质具有重要的观测研究价值。团队此次实现光子的分数量子反常霍尔态,为开展量子领域相关研究提供了优质的研究平台,无需极强外磁场等严苛的实验条件,且能实现对高集成度量子系统微观性质的全面测量和可控利用。诺贝尔物理学奖获得者弗兰克・维尔切克评价,这项研究向基于任意子的量子信息处理迈出重要一步。

封面图片

中国科学家实现二维金属碲化物材料的批量制备

中国科学家实现二维金属碲化物材料的批量制备二维过渡金属碲化物材料是一类新兴的二维材料,由碲原子(Te)和过渡金属原子(如钼、钨、铌等)组成,其微观结构类似于“三明治”,过渡金属原子被上下两层的碲原子“夹”住,形成层状二维材料。因具有奇特的超导、磁性、催化活性等物理和化学性质,二维过渡金属碲化物材料在量子通讯、催化、储能、光学等领域展现出重要应用潜力,受到了国际学术界的广泛关注。科学家实现二维金属碲化物材料的批量制备(中国科学院大连化学物理研究所供图)“比如,二维过渡金属碲化物具有高导电性和大比表面积,可作为高性能超级电容器和电池的电极材料;同时二维过渡金属碲化物纳米片表面具有丰富可调的活性位点,可用作制备绿氢和双氧水的电催化剂,提高催化剂的选择性、效率和性能;此外,该材料还展现出特有的量子现象,如超导和巨磁电阻等,可作为下一代低功耗器件和高密度磁性存储器件的材料。”论文共同通讯作者、中国科学院大连化物所研究员吴忠帅解释。然而,目前该材料还无法实现高质量的批量制备,阻碍了其实际应用。二维过渡金属碲化物材料一般采用“自上而下”的制备方法,如同拆解积木,通过机械力或化学作用方式将其一层一层剥离下来,从而制备出单层的二维纳米片。常用的“自上而下”方法有化学插层剥离法、球磨法、胶带剥离法、液相超声法等,其中化学插层剥离法的剥离效率虽然最高,但剥离仍需要数小时。批量化可控制备二维过渡金属碲化物纳米片(中国科学院大连化学物理研究所供图)科学家们大多采用有机锂试剂作为插层剂,即将含有锂离子的插层剂插入块体层状结构材料的片层中,并利用锂和水的反应使插层剂“膨胀”,在每一层间形成一个“气压柱”,将叠在一起的纳米片层层“撑开”,就如同使用了一把“化学刮刀”一层一层地将纳米片“刮”下来,这种层间的气体膨胀作用力远大于机械剥离力,可以提高剥离效率。“但是,有机锂是一种易燃易爆的液体试剂,具有很大的安全隐患。因此,实现安全、高效的化学剥离成为科学家努力的目标。”吴忠帅说。此次,科研人员创新性地采用固相化学插层剥离方法,筛选出了一种固相插层试剂——硼氢化锂。硼氢化锂具有强还原性质,在干燥空气中稳定,可用于高温固相插锂反应,解决了插层反应速度慢的问题,从而实现了安全、高效、快速的插层剥离。整个插层剥离过程只需10分钟,可批量制备出百克级(108克)碲化铌纳米片,与液相化学插层剥离法制备量均小于1克相比,此方法的产量提升了两个数量级。值得关注的是,科研人员还利用此方法制备出了五种不同过渡金属的二维过渡金属碲化物纳米片和十二种合金化合物纳米片,证明这种方法具有普适性。“该方法简单、快速、高效,对二维材料的宏量制备具有普适意义。”《自然》审稿人对该方法给予了高度评价。吴忠帅表示,利用该方法制备出的二维过渡金属碲化物纳米片的溶液和粉体具有良好的加工性能,可以作为各种功能性浆料,实现薄膜、丝网印刷器件、3D打印器件、光刻器件的高效和定制化加工等,有望在高性能量子器件、柔性电子、微型超级电容器、电池、催化、电磁屏蔽、复合材料等方向发挥重要作用。...PC版:https://www.cnbeta.com.tw/articles/soft/1426195.htm手机版:https://m.cnbeta.com.tw/view/1426195.htm

封面图片

中国首颗 500 + 比特超导量子计算芯片“骁鸿”交付

今日,中国科学院量子信息与量子科技创新研究院向国盾量子交付了一款504比特超导量子计算芯片“骁鸿”,用于验证国盾量子自主研制的千比特测控系统。据官方介绍,这颗芯片刷新了国内超导量子比特数量的纪录,后续还计划通过中电信量子集团的“天衍”量子计算云平台等向全球开放。研究人员表示,“骁鸿”芯片的主要目的,是为了推动大规模量子计算测控系统的发展,更多考虑的是通过集成更多的比特数和实现各单项指标,来满足测控系统验证的需求。值得一提的是,虽然“骁鸿”刷新了国内超导量子比特数量的纪录,但官方强调其综合性能与此前创造量子纠缠数世界纪录的“祖冲之二号”尚有差距,不具备实现“量子计算优越性”的能力。国盾量子计算负责人王哲辉还表示,“骁鸿”芯片将在国盾量子千比特测控系统上进行单比特门、双比特门、读取操作及测控系统性能测试,测试工作预计在今年8月前完成。据介绍,新测控系统集成度较上一代产品提升10倍以上,核心元器件使用国产化设计,在提升操控精度的同时大幅降低了成本。未来,国盾量子将面向万比特规模,进一步研发适用于可纠错量子计算机的新型测控系统。标签:#量子计算频道:@GodlyNews1投稿:@GodlyNewsBot

封面图片

中国科学家独立发现全新高温超导体 实现超导只需-192℃

中国科学家独立发现全新高温超导体实现超导只需-192℃超导领域已经产生5个诺贝尔奖,中国科学家也在超导领域获得了一次国家自然科学一等奖、一次国家最高科学技术奖。王猛教授团队历时三年,成功获得了镍氧化物La3Ni2O7单晶,并确定它能在压力下实现超导,转变温度高达80K(零下192摄氏度),达到了液氮温区(零下196摄氏度)。它也成为铜氧化物高温超导体之外,完全不同体系的高温超导体,而且电子结构、磁性与铜氧化物完全不同,有望推动破解高温超导机理,使设计和预测高温超导材料成为可能。《自然》杂志审稿人也高度评价了这一成果,认为它“具有突出重要性”,“是开创性的发现”。...PC版:https://www.cnbeta.com.tw/articles/soft/1370677.htm手机版:https://m.cnbeta.com.tw/view/1370677.htm

封面图片

中国科学家实现模式匹配量子密钥分发

中国科学家实现模式匹配量子密钥分发中国科学技术大学潘建伟、陈腾云等与清华大学马雄峰合作,首次在实验上实现了模式匹配量子密钥分发。据中国央视新闻2月5日报道,相关研究成果日前发表在国际学术期刊《物理评论快报》上。量子密钥分发基于量子力学基本原理,可以实现理论上无条件安全的保密通讯。模式匹配量子密钥分发协议(MP-QKD)是由清华大学马雄峰研究组于2022年提出的一种新型测量设备无关量子密钥分发协议,相较于原始的测量设备无关协议,可以将更多的探测事件用于成码,可以很大程度提高成码率;相较于双场量子密钥分发协议和相位匹配协议,无需复杂的激光器锁频锁相技术,节省成本且降低了实际应用难度,同时对环境噪声有更好的抗干扰能力。研究表明,模式匹配量子密钥分发在不需激光器锁频锁相的条件下可以实现远距离安全成码且在城域距离有较高成码率,极大地降低了协议实现难度,对未来量子通信网络构建具有重要意义。

封面图片

超导突破:科学家发现量子物质的新状态

超导突破:科学家发现量子物质的新状态这种"自旋三重电子对晶体"是一种以前未知的拓扑量子物质状态。这一发现最近发表在《自然》杂志上。顾强强是在文理学院詹姆斯-吉尔伯特-怀特杰出荣誉教授、物理学家J.C.SéamusDavis实验室工作的博士后研究员,他与科克大学学院的乔-卡罗尔和牛津大学的王树秋共同领导了这项研究。当配对电势呈现奇奇偶性时,超导体就是拓扑超导体,这会导致每个电子对采用自旋三重态,两个电子自旋的方向相同。顾强强介绍说,拓扑超导体是物理学家们热衷研究的对象,因为从理论上讲,它们可以构成超稳定量子计算机的材料平台。然而,即使对拓扑超导进行了长达十年的深入研究,除了同样在康奈尔大学发现的超流体3He之外,还没有任何块体材料被明确认定为自旋三奇偶超导体。最近,一种奇特的新材料--二碲化铀(UTe2)成为这种分类的极有希望的候选者。然而,它的超导阶参数仍然难以捉摸。2021年,理论物理学家开始提出,UTe2实际上处于拓扑对密度波(PDW)状态。此前从未探测到过这种形式的量子物质。简单地说,拓扑对密度波就像超导体中的成对电子的静态舞蹈,但这些成对电子在空间中形成周期性的晶体图案。"我们康奈尔大学的团队在2016年利用我们为此发明的超导尖端扫描约瑟夫森隧穿显微镜发现了有史以来观测到的第一个PDW,"顾说。"从那时起,我们开创了在毫开尔文温度和微伏能量分辨率下的SJTM研究。在UTe2项目中,我们直接观察到了超导配对势在原子尺度上的空间调制,并发现它们的调制完全符合PDW状态下电子对密度在空间周期性调制的预测。我们探测到的是一种新的量子物质态--由自旋-三重库珀对组成的拓扑对密度波"。库珀对密度波是电子量子物质的一种形式,其中电子对凝固成超导PDW态,而不是形成传统的"超导"流体,在这种流体中,所有电子对都处于相同的自由运动状态。顾强强说:"在自旋三重超导体中首次发现PDW令人兴奋。铀基重费米子超导化合物是一类新颖奇特的材料,为实现拓扑超导提供了一个前景广阔的平台。......我们的科学发现还指出了这种有趣的量子态在s波、d波和p波超导体中无处不在的性质,并为在广泛的材料中识别这种状态提供了新的途径。"...PC版:https://www.cnbeta.com.tw/articles/soft/1380305.htm手机版:https://m.cnbeta.com.tw/view/1380305.htm

🔍 发送关键词来寻找群组、频道或视频。

启动SOSO机器人