中韩科研团队首次揭示食盐原子级别溶解机制

中韩科研团队首次揭示食盐原子级别溶解机制 中韩科研团队一篇关于食盐(氯化钠)原子级别溶解机制的突破性科研成果论文,在国际学术期刊《自然-通讯》上发表,将对电池、半导体等众多应用领域新材料开发产生重要影响。 据中新社报道,记者星期六(3月23日)从中国科学院深圳先进技术研究院获悉,该院研究员、深圳理工大学(筹)教授丁峰联合韩国蔚山国立科技学院新材料工程系教授沈亨俊研究团队开发出一种“单离子控制技术”,在国际上首次成功在原子级别上观察到食盐的溶解过程,并实现在原子级别控制该过程。 论文的发表不仅在理论意义上为理解溶液中带电原子(离子)的行为提供了新的视角,还将对电池、半导体等众多应用领域新材料开发产生重要影响。 论文共同通讯作者丁峰介绍说,盐的溶解过程看似简单,但其背后的带电离子的行为却极为复杂,科学家们此前一直没能观察到食盐在水中溶解的原子过程。为解决这一难题,中韩合作研究团队这次在-268.8℃的极低温度下,将单个水分子沉积在仅有两到三个原子厚度的薄盐膜上,利用具有原子级分辨率的扫描隧道显微镜实现精确控制水分子移动,并观察到食盐中单个氯离子的溶解过程。 丁峰表示,此次提示盐原子级别溶解机制研究成果,实证理论计算与模拟对于在理解发生在材料表面的动力学过程起到关键作用,也是他长期提出“材料制造、理论先行”的成功实践。 论文共同通讯作者沈亨俊透露,离子是常见的带电原子,它们能够显著改变电池或半导体材料性能。通过开发的单离子控制技术,研究团队计划进一步扩展与离子相关的各种基础技术和应用研究。 2024年3月24日 7:16 AM

相关推荐

封面图片

SQC宣布推出世界首个原子级量子集成电路

SQC宣布推出世界首个原子级量子集成电路 当地时间6月23日,澳大利亚硅量子计算公司SQC宣布制造出世界上第一个原子级量子集成电路。目前,SQC团队已经使用原子级量子集成电路,精确地模拟了一个小型有机聚乙炔分子的量子态,这将有助于发现和制造新材料。 聚乙炔是一种聚合物材料,其结构包括单双键交替的共轭结构,目前可用于制备太阳能电池、半导体材料和电活性聚合物等。相关成果论文6月22日发表在《自然》(Nature)。 澎湃新闻

封面图片

科学家发现新型锂离子导体 可用于强化电动汽车电池

科学家发现新型锂离子导体 可用于强化电动汽车电池 利物浦大学的一个团队开发出了一种新型固态锂离子导体,可以取代电池中的液态电解质,从而提高安全性和效率。图片表示锂离子(蓝色)在结构上移动。资料来源:利物浦大学这种新材料由无毒的地球富集元素组成,具有足够高的锂离子传导性,可以取代目前锂离子电池技术中的液态电解质,提高安全性和能量容量。该大学的跨学科研究团队采用变革性科学方法来设计这种材料,他们在实验室中合成了这种材料,确定了它的结构(原子在空间中的排列),并在电池中进行了演示。这种新材料是极少数能达到足以取代液态电解质的高锂离子电导率的固体材料之一,并且由于其结构而能以一种新的方式工作。这一发现是通过合作计算和实验工作流程实现的,该流程利用人工智能和基于物理学的计算来支持大学化学专家的决策。这种新材料为化学优化提供了一个平台,以进一步提高材料本身的性能,并根据研究提供的新认识来确定其他材料。利物浦大学化学系马特-罗森斯基(Matt Rosseinsky)教授说:"这项研究展示了一种新型功能材料的设计和发现。这种材料的结构改变了人们以往对高性能固态电解质的理解。具体来说,具有多种不同移动离子环境的固体可以表现出很好的性能,而不仅仅是离子环境范围很窄的少数固体。这极大地开拓了进一步发现的化学空间。"最近的报道和媒体报道预示着人工智能工具已被用于寻找潜在的新材料。在这种情况下,人工智能工具是独立工作的,因此很可能会以各种方式重现它们接受过的训练,生成的材料可能与已知材料非常相似。"这篇发现研究论文表明,人工智能和由专家调配的计算机可以解决现实世界材料发现的复杂问题,在这个问题上,我们寻求的是成分和结构上有意义的差异,其对性能的影响要根据理解来评估,我们的颠覆性设计方法为发现这些以及其他依赖离子在固体中快速运动的高性能材料提供了一条新的途径"。这项研究由利物浦大学化学系、材料创新工厂、利弗胡尔姆功能材料设计研究中心、史蒂芬森可再生能源研究所、阿尔伯特-克鲁中心和工程学院的研究人员共同努力完成。并得到了工程与物理科学研究理事会(EPSRC)、勒弗胡尔姆信托基金会(Leverhulme Trust)和法拉第研究所(Faraday Institution)的资助。编译来源:ScitechDaily ... PC版: 手机版:

封面图片

研究人员提出了基于原子尺度缺陷的永久数据存储新途径

研究人员提出了基于原子尺度缺陷的永久数据存储新途径 通过聚焦离子束将信息写入光学活性原子缺陷(左图),并利用阴极发光或光致发光(右图)读取信息。资料来源:M. Hollenbach, H. Schultheiß研究小组在《先进功能材料》(Advanced Functional Materials)杂志上报告说,这些缺陷是由聚焦离子束产生的,具有空间分辨率高、写入速度快、存储单个比特能量低等特点。据最新估计,每天产生的新数据约为 3.3 亿 TB,仅在过去两年中就产生了全球 90% 的数据。如果说单纯的数字已经表明需要先进的数据存储技术,那么这绝不是与这一发展相关的唯一问题。当前存储介质的存储时间有限,需要在几年内进行数据迁移,以避免数据丢失。HZDR 离子束物理与材料研究所的 Georgy Astakhov 博士说:"除了陷入永久数据迁移程序之外,这还大大增加了能源消耗,因为在此过程中会消耗大量能源。"为了缓解这一迫在眉睫的危机,Astakhov 的团队现在引入了一种基于碳化硅原子级缺陷的长期数据存储新概念。这些缺陷由聚焦的质子或氦离子束造成,并利用与缺陷相关的发光机制进行读取。传统存储设备如何受物理学制约目前,磁性存储器是追求大容量的数据存储解决方案的首选,但物理定律为可实现的存储密度设定了限制。要提高存储密度,就必须缩小磁性颗粒的尺寸。但这样一来,材料中的热波动和扩散过程就变得越来越重要,对存储时间的影响也越来越大。调整材料的磁性可能会抑制这种影响,但这是有代价的:存储信息的能量更高。同样,光学设备的性能也受到物理定律的制约。由于所谓的衍射极限,最小记录位的大小受到限制:它不能小于光波长的一半,这就设定了最大存储容量的极限。出路在于多维光学记录。碳化硅具有原子尺度的缺陷,尤其是晶格部位没有硅原子。这些缺陷是由聚焦的质子或氦离子束产生的,具有空间分辨率高、写入速度快、存储单个比特的能量低等特点。光学介质固有的存储密度衍射限制同样适用于这种的情况。研究人员通过 4D 编码方案克服了这一限制。在这里,通过控制横向位置和深度以及缺陷数量,实现了三个空间维度和额外的第四个强度维度。然后,他们通过光激发引发的光致发光来读出存储的数据。此外,通过聚焦电子束激发可观察到阴极发光,从而大大提高了存储密度。世代存储数据怎样实现根据介质保存的环境条件,存储的信息可能会再次从缺陷中消失,但考虑到他们的材料,科学家们等到了一个好消息。Astakhov说:"这些缺陷的失活与温度有关,这表明在环境条件下,这些缺陷的保留时间最短可达几代。还有更多。利用近红外激光激发、现代编码技术和多层数据存储(即在多达十层碳化硅层上相互堆叠),研究小组达到了与蓝光光盘相当的面积存储密度。在数据读出时,改用电子束激发而不是光学激发,这种方式所能达到的极限相当于目前报道的原型磁带的记录面积存储密度,但存储时间更短,能耗更高。"编译自:ScitechDaily ... PC版: 手机版:

封面图片

科学家确定可用于搭建月球和火星建筑的潜在溶剂

科学家确定可用于搭建月球和火星建筑的潜在溶剂 这项工作由华盛顿州立大学机械与材料工程学院副教授苏米克-班纳吉(Soumik Banerjee)领导,在《物理化学杂志B》(Journal of Physical Chemistry B)上进行了报道。被称为离子液体的强力溶剂是处于液态的盐。"机器学习工作把我们从 2 万英尺的高度降到了 1000 英尺的水平,"Banerjee 说。"我们能够非常快速地向下选择大量离子液体,然后我们还能科学地理解决定溶剂是否能够溶解材料的最重要因素。"美国国家航空航天局(NASA)资助了Banerjee的工作,作为其Artemis任务的一部分,NASA希望将人类送回月球,然后再送往火星等更深的太空。但是,要使这样的长期任务成为可能,宇航员就必须利用这些地外环境中的材料和资源,使用3D打印技术利用从月球或火星土壤中提取的基本元素制造结构、工具或零件。Banerjee说:"对美国国家航空航天局来说,原地资源利用是未来几十年的一件大事。否则,我们将需要从地球运载高得吓人的材料"。获取这些建筑材料必须以环保和节能的方式进行。开采元素的方法也不能使用水,因为月球上没有水。Banerjee 的研究小组十多年来一直在研究用于电池的离子液体,这可能就是答案。然而,在实验室测试每种候选离子液体既昂贵又耗时,因此研究人员利用机器学习和原子级别的建模技术,从数十万种候选离子液体中筛选出了几种。他们寻找那些可以消化月球和火星材料,提取铝、镁和铁等重要元素,可以自我再生,或许还能产生氧气或水作为副产品,帮助提供生命支持的离子液体。在确定溶剂所需的优良品质后,研究人员找到了大约六种非常理想的候选溶剂。成功的重要因素包括组成盐的分子离子的大小、表面电荷密度(即离子单位面积上的电荷)以及离子在液体中的流动性。在另一项研究中,研究人员与科罗拉多大学的研究人员合作,在实验室中测试了几种离子液体溶解化合物的能力。他们希望最终能建造一个实验室规模或中试规模的反应器,并用从月球获取到的材料测试候选溶剂。编译来源:ScitechDaily ... PC版: 手机版:

封面图片

康宁新研究发现玻璃中原子环结构会影响材质的性能和转变温度

康宁新研究发现玻璃中原子环结构会影响材质的性能和转变温度 玻璃越来越多地应用于各种高性能领域,包括消费和工业应用、军事和航空电子产品以及镀膜和光学产品。鉴于手机和喷气式飞机等产品对精度的严格要求,玻璃基板在整个制造过程中保持形状不变至关重要。康宁公司(Corning Incorporated)是创新玻璃、陶瓷及相关材料的制造商,该公司投入大量资源研究不同类型玻璃的稳定性。最近,康宁公司的研究人员发现,了解玻璃材料中原子环的稳定性可以帮助他们预测玻璃产品的性能。这种能力非常重要,因为使用最广泛的玻璃是硅酸盐玻璃,它由不同尺寸的原子环以三维方式连接而成。中子散射实验在能源部橡树岭国家实验室进行的中子散射实验中,ORNL 和康宁公司的科学家们发现,随着玻璃中较小的、不太稳定的原子环数量的增加,玻璃的不稳定性或液态脆性也会增加。发表在《自然-通讯》(Nature Communications)上的中子实验结果揭示了硅酸盐玻璃的中程原子环结构与其液态脆性之间的明显相关性。当玻璃液冷却到玻璃转变温度时,其粘度会发生很大变化。在一定的温度变化下,脆性较大的液体的粘度变化会更大。橡树岭国家实验室和康宁公司的科学家发现,随着玻璃中较小的、不太稳定的原子环数量的增加,玻璃的不稳定性或液态易碎性也会增加。该研究论文的通讯作者、康宁公司助理研究员 Ying Shi 说:"以前,科学家们一直不知道玻璃转变的驱动机制。人们并不清楚为什么某些类型的玻璃凝固得更快或更慢。"Shi 和她来自康宁公司、加州大学洛杉矶分校和牛津大学的合作者与 ORNL Spallation Neutron Source 的 NOMAD 中子衍射仪光束线科学家合作,对工业常用的硅酸铝玻璃进行了研究。利用最近开发和验证的中子散射数据分析工具 RingFSDP,研究小组从收集到的数据中找出了关键模式,揭示了玻璃中的液体脆性与其原子环稳定性之间的关系。RingFSDP 是由康宁公司和 ORNL 科学家共同开发的免费开源程序,用于研究硅酸盐玻璃的原子环结构。它根据中子衍射数据中第一个尖锐衍射峰的形状推导出硅酸盐玻璃中的环尺寸分布。"将玻璃转变温度范围与玻璃的基本结构特征联系起来,将对玻璃的设计和生产产生重大影响,"论文共同作者、康宁公司研究员道格拉斯-艾伦(Douglas Allan)说。"我们的工作表明,玻璃的原子环结构与其玻璃转变温度范围之间存在明显的相关性,因此玻璃的性能特征也与之相关。"编译来源:ScitechDaily ... PC版: 手机版:

封面图片

科学家发明从海水中提取铀用于核能的新技术

科学家发明从海水中提取铀用于核能的新技术 核能反应堆释放原子内部自然储存的能量,并通过将原子真正击碎这一过程被称为裂变将其转化为热能和电能。铀是这一过程中最受欢迎的元素,因为它的所有形态都具有不稳定性和放射性,很容易分裂。目前,这种金属是从岩石中提取的,但铀矿储量有限。然而,据核能机构估计,有 45 亿吨铀以溶解铀酰离子的形式漂浮在我们的海洋中。这一储量是陆地上储量的 1000 多倍。但事实证明,提取这些离子具有挑战性,因为提取材料没有足够的表面积来有效捕获离子。因此,东北师范大学化学学院的Rui Zhao, Guangshan Zhu及其同事希望开发一种具有大量微观角落和缝隙的电极材料,用于电化学捕获海水中的铀离子。这种新型涂层布能有效地在其表面积聚来自含铀海水的铀(黄色)。来源:改编自《美国化学学会中心科学》,2023 年,DOI: 10.1021/acscentsci.3c01291为了制作电极,研究小组首先使用碳纤维编织的柔性布。他们在布上涂上两种特殊的单体,然后进行聚合。接着,他们用盐酸羟胺处理布,在聚合物中加入脒肟基团。布的天然多孔结构为脒肟创造了许多微小的口袋,使其可以嵌套在其中,从而轻松捕获铀离子。在实验中,研究人员将涂层布作为阴极放入天然海水或加铀的海水中,再加上一个石墨阳极,并在电极之间运行循环电流,随着时间的推移,阴极布上积累了亮黄色的铀基沉淀物。在使用从渤海收集的海水进行的测试中,每克涂层活性材料在 24 天内提取了 12.6 毫克铀。涂层材料的提取能力高于研究小组测试的大多数其他铀提取材料。此外,使用电化学方法捕获离子的速度比让离子在布上自然积聚的速度快三倍左右。研究人员说,这项工作提供了一种从海水中捕获铀的有效方法,这可能会使海洋成为新的核燃料供应地。编译来源:ScitechDaily ... PC版: 手机版:

🔍 发送关键词来寻找群组、频道或视频。

启动SOSO机器人