癌症治疗新发现!研究:“杀手基因”SLFN11可终结癌细胞荷兰癌症研究所的最新研究揭示了一种新的细胞死亡途径。

None

相关推荐

封面图片

研究发现癌细胞如何相互拉扯决定了癌症是否扩散

研究发现癌细胞如何相互拉扯决定了癌症是否扩散 在今天发表于 AIP 出版社《APL 生物工程》(APL Bioengineering)上的一篇论文中,来自德国和西班牙的研究小组利用乳腺癌细胞系面板以及乳腺癌和宫颈癌患者的原发肿瘤外植体,研究了两种不同的细胞收缩力模式:一种是产生集体组织表面张力,使细胞簇保持紧凑;另一种是更具方向性的收缩力,使细胞能够将自身拉入 ECM。"我们重点研究了两个参数,即细胞拉扯 ECM 纤维并产生牵引力的能力,以及细胞相互拉扯从而产生高组织表面张力的能力,"作者 Eliane Blauth 说。"我们将每种特性与不同的收缩机制联系起来,并询问它们如何与癌细胞逃逸和肿瘤侵袭性联系起来"。胶原蛋白网络上的两个恶性混合穆勒氏瘤外植体。两块瘤体都粘附在胶原蛋白网络上,并开始拉扯胶原蛋白纤维,这促使胶原蛋白发生广泛的位移和排列,同时也导致了以应力纤维收缩能力为主的细胞逃逸。这两块胶原尖锐而光滑的边界结构进一步表明,组织表面张力很强,阻碍了皮质收缩力占优势的细胞逃逸。资料来源:Steffen Grosser、Frank Sauer 和 Eliane Blauth研究小组发现,更具侵袭性的细胞对 ECM 的拉力比对自身的拉力更大,而非侵袭性细胞对自身的拉力比对 ECM 的拉力更大不同的拉力行为归因于细胞内不同的肌动蛋白细胞骨架结构。侵袭性细胞主要使用肌动蛋白应力纤维横跨细胞的粗大肌动蛋白束对周围环境产生拉力,而非侵袭性细胞则通过其肌动蛋白皮层细胞膜正下方的薄网络产生拉力。研究表明,决定细胞逃逸潜力的不是这些收缩模式的总体大小,而是它们之间的相互作用。仅用中度侵袭性细胞进行的实验表明,这些细胞对 ECM 纤维产生的总作用力与非侵袭性细胞相当,但它们仍能脱离并侵袭 ECM,这是非侵袭性细胞无法做到的。"非侵袭性细胞仍具有较高的皮质收缩力,使它们保持在一起,而中度侵袭性细胞的皮质收缩力几乎消失,"布劳特说。"因此,尽管它们对 ECM 纤维的拉力要弱得多,但对它们的牵制作用并不大。"研究小组对来自患者的重要肿瘤外植体进行的测量证实了他们在细胞系实验中的发现。在这里,具有高皮质收缩性的细胞数量在肿瘤发展过程中有所减少。"这进一步表明,随着肿瘤的生长,细胞相互拉扯并将自身聚集在一起的能力会变弱,从而可能增加转移风险"。编译来源:ScitechDaily ... PC版: 手机版:

封面图片

解码癌症:研究人员揭示细胞是如何"叛变"的

解码癌症:研究人员揭示细胞是如何"叛变"的 访问:NordVPN 立减 75% + 外加 3 个月时长 另有NordPass密码管理器 约翰斯-霍普金斯大学医学院的科学家们绘制了人类乳腺和肺细胞中的一条分子途径,它可能导致基因组过度复制,而这正是癌细胞的一个特征。这些发现最近发表在《科学》杂志上,揭示了当一组分子和酶触发并调节所谓的"细胞周期"(用细胞的遗传物质制造新细胞的重复过程)时,会出现什么问题。研究人员认为,这些发现可用于开发中断细胞周期障碍的疗法,并有可能阻止癌症的生长。为了复制,细胞会遵循一个有序的程序,首先复制整个基因组,然后分离基因组副本,最后将复制的DNA平均分成两个"子"细胞。人类细胞的每对染色体有 23 对一半来自母亲,一半来自父亲,包括性染色体 X 和 Y即总共 46 对,但已知癌细胞会经历一个中间状态,即拥有双倍的数量92 条染色体。这是如何发生的是一个谜。约翰霍普金斯大学医学院分子生物学和遗传学副教授塞尔吉-雷戈特(Sergi Regot)博士说:"癌症领域科学家们的一个永恒问题是:癌细胞基因组是如何变得如此糟糕的?我们的研究对细胞周期的基础知识提出了挑战,让我们重新评估了关于细胞周期如何调节的想法"。细胞周期调控面临的挑战雷戈特说,复制基因组后受到压力的细胞会进入休眠或衰老阶段,并错误地冒着再次复制基因组的风险。一般来说,这些休眠细胞在被免疫系统"识别"为有问题的细胞后,最终会被清除。但有时,尤其是随着年龄的增长,免疫系统无法清除这些细胞。如果任由这些异常细胞在体内游荡,它们就会再次复制基因组,在下一次分裂时对染色体进行洗牌,从而引发癌症。为了确定细胞周期中出现问题的分子途径的细节,雷戈特和研究生研究助理康纳-麦肯尼(Connor McKenney)领导约翰-霍普金斯大学的研究小组,重点研究了乳腺导管和肺组织中的人类细胞。原因何在?这些细胞的分裂速度通常比体内其他细胞更快,从而增加了观察细胞周期的机会。观看这段视频,了解细胞在不分裂的情况下经历两次复制基因组的细胞周期阶段。细胞核中出现的亮点表明 DNA 正在复制的位置。资料来源:约翰-霍普金斯大学医学院塞尔吉-雷戈特实验室雷戈特的实验室擅长对单个细胞进行成像,因此特别适合发现极少数没有进入休眠期、继续复制基因组的细胞。在这项新研究中,研究小组仔细观察了数千张单细胞在细胞分裂过程中的图像。研究人员开发了发光生物传感器,用于标记细胞周期蛋白依赖性激酶(CDKs)。他们发现,各种 CDK 在细胞周期的不同时期激活。在细胞受到环境压力(如干扰蛋白质生产的药物、紫外线辐射或所谓的渗透压(细胞周围水压的突然变化))后,研究人员发现 CDK 4 和 CDK 6 的活性降低了。细胞周期破坏的研究结果五到六小时后,当细胞开始准备分裂时,CDK 2 也受到了抑制。此时,一种名为无丝分裂促进复合物(APC)的蛋白质复合物在细胞分裂前的阶段被激活,这一步骤被称为有丝分裂。Regot说:"在研究中的受压环境中,APC激活发生在有丝分裂之前,而通常人们只知道它在有丝分裂过程中激活。"当暴露在任何环境压力下时,约 90% 的乳腺细胞和肺细胞会离开细胞周期,进入安静状态。在他们的实验细胞中,并非所有细胞都安静了下来。研究小组发现,约有 5%-10%的乳腺细胞和肺细胞重返细胞周期,再次分裂染色体。通过另一系列实验,研究小组发现,所谓的应激活化蛋白激酶活性的增加与一小部分细胞脱离安静阶段并继续将基因组翻倍有关。雷戈特说,目前正在进行一些临床试验,测试DNA损伤剂与阻断CDK的药物。联合用药有可能促使一些癌细胞将基因组复制两次,产生异质性,最终产生抗药性。也许有药物可以阻止 APC 在有丝分裂前激活,从而防止癌细胞二次复制基因组,防止肿瘤阶段性进展。编译来源:ScitechDaily ... PC版: 手机版:

封面图片

新型基因回路有望改变癌细胞耐药性

新型基因回路有望改变癌细胞耐药性 癌症治疗中,临床医生不知道何时、何地以及哪种耐药性可能会出现,这让他们落后于狡猾的癌细胞一步。现在,美国宾夕法尼亚州立大学领导的研究团队找到了一种方法,通过重新编程癌症演变过程,让肿瘤更容易被治疗。研究论文发表在近期出版的《自然・生物技术》杂志上。该团队创建了一种模块化基因回路,或称双开关选择基因驱动,用于将非小细胞肺癌 EGFR 基因突变引入,这种突变是重要的治疗靶标。

封面图片

科学家通过基因编辑诱使癌细胞自毁

科学家通过基因编辑诱使癌细胞自毁 创新的关键在于引入了两个新的"开关"。第一个开关能使改造细胞在接触某种药物时,超越并主宰癌细胞群的其他部分。第二个开关会释放一种毒素,杀死现在占主导地位的改造细胞及其未改造的邻近细胞。发表在《自然-生物技术》(Nature Biotechnology)上的一项研究强调,这种"双开关选择基因驱动"方法解决了现有癌症治疗方法的核心难题。一些癌细胞不可避免地会进化出抗药性机制,从而在治疗中存活下来。细胞可能会使药物失活,关闭药物靶向的通路,或做出其他分子改变以维持生命。为了应对这种情况,医生通常会使用多种药物组合,以不同的方式攻击肿瘤。然而,这些选择是有限的,尤其是对于缺乏有效治疗靶点的难治癌症。新技术采用了一种截然不同的方法。它不是寻找新的药物或靶点,而是利用肿瘤快速进化的能力来对付它。在概念验证实验中,研究人员使用了肺癌细胞和药物厄洛替尼。通常,厄洛替尼是通过阻断表皮生长因子受体蛋白的活化来发挥作用的,而表皮生长因子受体蛋白是细胞不受控制生长的驱动力。然而,科学家们改造了肺癌细胞,通过第一个"自杀基因"来逆转厄洛替尼的作用,使细胞产生抗药性,并在接触药物后迅速增殖。将厄洛替尼应用于混合修饰和未修饰的癌细胞,可使经过编辑的细胞迅速成为肿瘤样本中的主要群体。一旦达到这种效果,研究人员就停止给药。然后,他们用一种名为 5-FC 的无害化合物激活了第二个"自杀基因"。这种基因能表达一种酶,将 5-FC 转化为剧毒抗癌药物 5-FU。由于被编辑的细胞现在占了肿瘤的大部分,释放的毒素有效地杀死了整个癌细胞群。研究人员在患有非小细胞肺癌(最常见的肺癌类型)的小鼠身上测试了这种方法,发现经过改造的细胞在20天内就超越了原来的肿瘤。到第80天,肿瘤完全消退。研究小组目前正努力在其他癌症类型和药物组合上测试这种方法。如果试验成功,它将为战胜癌症提供一种新方法。 ... PC版: 手机版:

封面图片

荷兰癌症研究所编制出存在于癌症转移灶中细菌的详细目录

荷兰癌症研究所编制出存在于癌症转移灶中细菌的详细目录 例如,某些细菌与免疫疗法的不良反应有关。这项研究为更好地了解细菌如何帮助或阻碍癌症(治疗),以及我们如何利用这一点为患者谋福利指明了方向。研究人员今天在科学杂志《细胞》上发表了他们的研究成果。在我们的身体上和体内生活着数十亿种微生物:细菌、病毒和酵母菌我们的微生物群。我们需要它们,它们也需要我们。例如,细菌帮助我们消化食物,与我们的免疫系统合作对抗病原体。肠道细菌尤其受到广泛研究,包括癌症方面的研究。例如,它们可以影响免疫疗法和化疗的效果。但是,这些微小的同居者也会在肠道外栖息。例如,肿瘤中就有细菌。借助新技术,研究人员正在更好地找出它们是哪些微生物。但是,细菌如何进入肿瘤以及它们在肿瘤中究竟做了什么,这些问题在很大程度上仍是未知数,因此还不清楚它们对疾病和治疗效果有多重要。26 种癌症类型由于许多病人最终死于转移瘤,而且许多治疗方法都针对转移瘤,因此埃米尔-沃伊斯特和洛德维克-韦塞尔斯的研究小组对这些转移瘤进行了更深入的研究。毕竟,人们对这些肿瘤中的细菌知之甚少。他们与荷兰癌症研究所(Netherlands Cancer Institute)和Oncode研究所(Oncode Institute)等机构的同事一起绘制了癌症转移灶中细菌的分布图。研究人员从 26 种癌症的 4000 多个转移灶组织中分析了DNA的密码。从这些遗传物质中,您不仅可以看到哪些人体细胞,还可以看到哪些细菌因为这些细菌也有 DNA。为此,他们使用了哈特维格医学基金会生成的临床信息和 DNA 数据。数据分析和结果有了这些庞大得难以想象的信息(400 TB),他们利用计算机的能力找出了哪些细菌聚集在哪些地方(见图)。这需要大量巧妙的编程,因为在这样一块组织中,细菌的 DNA 相对较少。研究人员托马斯-巴塔利亚(Thomas Battaglia)说:"令人惊讶的是,不仅仅是结肠癌转移灶含有大量细菌。人们可能会想到,因为我们的大多数细菌都居住在结肠中,它们有可能在转移过程中从结肠转移到身体的其他部位。另外,转移灶中存在哪些细菌与身体的位置、那里的条件和癌症类型密切相关。"细菌和治疗效果他们还发现了细菌与疗效之间的联系。例如,转移灶中含有镰刀菌属的肺癌患者对免疫疗法的反应比没有这种细菌的患者差。托马斯:"我们还注意到,细菌群落越多样化,邻近的肿瘤细胞就越活跃"。"我们的工作为探索新的治疗方式打开了大门,例如针对可能有助于肿瘤的细菌的治疗,"合著者 Iris Mimpen 说。"它帮助我们了解肿瘤的复杂环境是如何运作的,在这个环境中,各种细胞包括细菌生活在一起并相互影响"。编译自:ScitechDaily ... PC版: 手机版:

封面图片

利用癌细胞的突变 研究人员设计出了抗癌能力超过100倍的T细胞

利用癌细胞的突变 研究人员设计出了抗癌能力超过100倍的T细胞 利用癌症自身的策略实现治疗的突破现在,加州大学旧金山分校和西北医学中心的科学家们可能已经找到了绕过这些限制的方法,即借用癌症本身的一些技巧。通过研究导致淋巴瘤的恶性T细胞的突变,他们找到了一种能赋予工程T细胞特殊效力的突变。研究小组将这种独特突变的基因植入正常人的 T 细胞,使其杀死癌细胞的能力提高了 100 多倍。这些T细胞在数月内一直在抑制肿瘤的生长,没有显示出中毒的迹象。目前的免疫疗法只对血液和骨髓中的癌症有效,而这种新方法却能杀死小鼠皮肤、肺和胃组织中的实体瘤。研究小组已经开始着手在人体内测试这种新方法。这项研究的合著者、微生物学和免疫学副教授科勒-罗伊巴尔(Kole Roybal)博士说,这一突破的灵感来自武术中的借力打力的原理。他说:"我们利用赋予癌细胞持久力的突变,设计出了一种我们称之为'柔道T细胞疗法'的疗法,它能在肿瘤创造的恶劣环境中生存和发展。"该研究报告于 2 月 7 日发表在《自然》杂志上。隐藏在众目睽睽之下的解决方案事实证明,免疫学很难对付大多数癌症,因为实体瘤会创造一个专注于自我维持的环境,为了自身的利益而重新分配氧气和营养等资源。通常,癌症肿瘤会劫持人体的免疫系统,使其防御而非攻击癌症。这不仅损害了普通T细胞靶向癌细胞的能力,也削弱了免疫疗法中使用的工程T细胞的有效性,因为工程T细胞很快就会疲于应对肿瘤的防御。为了让免疫疗法在这些条件下发挥作用,"我们需要赋予健康的T细胞超出其自然能力的能力,"Roybal说,他同时也是格拉德斯通基因组免疫学研究所的成员。加州大学旧金山分校和西北大学的研究小组利用淋巴瘤患者的这种 T 细胞,筛选出 71 种突变,最终分离出一种既有效又无毒的突变,并对其进行了一系列严格的安全性测试。癌症治疗的新视野西北大学范伯格医学院医学皮肤病学、生物化学和分子遗传学副教授、医学博士 Jaehyuk Choi 说:"这种方法比我们以前见过的任何方法都更有效。我们的发现使T细胞有能力杀死多种癌症类型,并有可能为预后不良的患者提供治疗,"他指出,由于细胞疗法在患者体内存活和生长,它们可以提供长期的抗癌免疫力。"在帕克癌症免疫疗法研究所(Parker Institute for Cancer Immunotherapy)和风险投资公司Venrock的合作下,Roybal和Choi成立了一家新公司Moonlight Bio,以实现他们"借力打力"法的潜力。他们的第一个项目是开发一种肺癌疗法,希望在未来几年内开始在人体内进行试验。"我们认为这是一个起点,"Roybal 说。"关于如何增强这些细胞并使其适应不同类型的疾病,我们可以从大自然中学到很多东西"。编译来源:ScitechDaily ... PC版: 手机版:

🔍 发送关键词来寻找群组、频道或视频。

启动SOSO机器人