模拟病毒的DNA粒子可提供无免疫副作用的疫苗

模拟病毒的DNA粒子可提供无免疫副作用的疫苗 DNA 粒子制成的疫苗递送平台避免了使用蛋白质粒子时出现的脱靶效应 巴特实验室/麻省理工学院微粒疫苗通常是由携带许多病毒抗原拷贝的蛋白型病毒微粒支架制成。由于它们模拟天然病毒,因此与传统疫苗相比,这些疫苗能产生更强的免疫反应。它们能激活 B 细胞,使其产生针对所传递抗原的特异性抗体。不过,微粒疫苗的一个潜在缺点是,蛋白质支架会刺激产生针对它和它所携带的抗原(也是一种蛋白质)的抗体,从而降低免疫系统对抗原的反应强度。此外,由于机体会产生针对蛋白质平台的抗体,这就限制了它今后作为疫苗载体的使用,即使是用于不同的病毒。现在,麻省理工学院的研究人员开发出了一种基于 DNA 的支架,可以避免这一问题,确保免疫系统只对抗原而不是平台做出反应。该研究的通讯作者之一丹尼尔-凌伍德说:"DNA纳米粒子本身没有免疫原性。如果使用基于蛋白质的平台,你会对平台和感兴趣的抗原产生同样高级别的抗体反应,这会使重复使用该平台变得复杂,因为机体会对它产生高亲和力的免疫记忆"。为了制作支架,研究人员采用了他们以前使用过的"DNA折纸"技术,即折叠DNA,使其模仿病毒的结构。这种技术可以在特定位置附着各种分子,如病毒抗原。将 SARS-CoV-2 穗状病毒蛋白的受体结合部分附着在 DNA 支架上后,他们在小鼠身上进行了测试。他们发现,小鼠并没有像使用蛋白质支架时那样对支架产生抗体,只是对SARS-CoV-2产生了抗体。另一位通讯作者马克-巴特(Mark Bathe)说:"我们在这项研究中发现,DNA不会诱发抗体,从而分散对相关蛋白质的注意力。你可以想象,你的 B 细胞和免疫系统正在接受目标抗原的全面训练,而这正是你想要的让你的免疫系统激光聚焦于感兴趣的抗原。"与其他类型疫苗刺激的 T 细胞不同,B 细胞可以持续数十年,提供长期保护。Bathe说:"免疫学领域的许多人都对微粒疫苗非常感兴趣,因为它们能产生强大的体液免疫,也就是基于抗体的免疫,它有别于基于T细胞的免疫,而mRNA疫苗似乎能更强烈地激发T细胞免疫。"研究结果表明,DNA 支架是基于蛋白质的平台的有效替代品,但不会产生脱靶效应,研究人员目前正在探索是否可以利用它同时传递不同的病毒抗原,以提供对一系列病毒的保护。Lingwood说:"我们有兴趣探索是否能让免疫系统产生更高水平的免疫力,以抵御流感、艾滋病毒和SARS-CoV-2等传统疫苗方法所抵御的病原体。这项研究发表在《自然通讯》杂志上。 ... PC版: 手机版:

相关推荐

封面图片

DNA诱饵在突破性疫苗方法中战胜病毒

DNA诱饵在突破性疫苗方法中战胜病毒 这种疫苗已在小鼠身上进行了试验,它由一个 DNA 支架组成,支架上有许多病毒抗原的拷贝。这种疫苗被称为微粒疫苗,模仿病毒的结构。以前大多数微粒疫苗的研究工作都依赖于蛋白质支架,但这些疫苗中使用的蛋白质往往会产生不必要的免疫反应,从而分散免疫系统对目标的注意力。在小鼠研究中,研究人员发现 DNA 支架不会诱发免疫反应,从而使免疫系统能够将抗体反应集中在目标抗原上。麻省理工学院生物工程学教授马克-巴特(Mark Bathe)说:"我们在这项工作中发现,DNA 不会诱发抗体,以免分散对相关蛋白质的注意力。可以想象的是, B 细胞和免疫系统正在接受目标抗原的全面训练,而这正是你想要的让免疫系统激光聚焦于感兴趣的抗原。"研究人员说,这种能强烈刺激 B 细胞(产生抗体的细胞)的方法能让人们更容易开发出针对艾滋病、流感以及 SARS-CoV-2 等难以针对的病毒的疫苗。与受到其它类型疫苗刺激的 T 细胞不同,这些 B 细胞可以持续数十年,提供长期保护。哈佛大学医学院副教授、拉贡研究所首席研究员丹尼尔-凌伍德说:"我们有兴趣探索是否能让免疫系统产生更高水平的免疫力,以抵御流感、艾滋病毒和SARS-CoV-2等传统疫苗方法所抵御的病原体。这种将针对目标抗原的反应与平台本身脱钩的想法是一种潜在的强大免疫学技巧,现在我们可以利用它来帮助这些免疫学靶向决策朝着更有针对性的方向发展"。Bathe、Lingwood和哈佛大学医学院副教授、拉贡研究所首席研究员亚伦-施密特(Aaron Schmidt)是这篇论文的资深作者,论文今天(1月30日)发表在《自然-通讯》(Nature Communications)杂志上。论文的主要作者包括麻省理工学院前博士后艾克-克里斯蒂安-瓦姆霍夫、拉贡研究所博士后拉兰斯-隆萨、哈佛大学前研究生贾里德-费尔德曼、麻省理工学院研究生格兰特-克纳普和哈佛大学前研究生布莱克-豪瑟。微粒疫苗通常由一种蛋白质纳米粒子组成,其结构与病毒相似,可携带许多病毒抗原拷贝。这种高密度的抗原能产生比传统疫苗更强的免疫反应,因为人体认为它与真正的病毒相似。目前已开发出针对乙型肝炎和人类乳头瘤病毒等少数病原体的微粒疫苗,而针对 SARS-CoV-2 的微粒疫苗也已获准在韩国使用。这些疫苗尤其擅长激活 B 细胞,使其产生针对疫苗抗原的特异性抗体。Bathe说:"免疫学领域的许多人都对微粒疫苗非常感兴趣,因为它们能产生强大的体液免疫,也就是基于抗体的免疫,它有别于基于T细胞的免疫,而mRNA疫苗似乎能更强烈地激发T细胞免疫。"不过,这种疫苗的一个潜在缺点是,用于支架的蛋白质通常会刺激人体产生针对支架的抗体。巴特说,这会分散免疫系统的注意力,使其无法如愿启动强有力的反应。他说:"中和 SARS-CoV-2 病毒需要一种疫苗以产生针对病毒尖峰蛋白受体结合域部分的抗体。当在基于蛋白质的微粒上显示这种抗体时,免疫系统不仅能识别受体结合域蛋白质,还能识别与试图引起的免疫反应无关的所有其他蛋白质。"另一个潜在的缺点是,如果同一个人接种了不止一种由相同蛋白支架携带的疫苗,例如接种了 SARS-CoV-2 疫苗,然后又接种了流感疫苗,那么他们的免疫系统很可能会立即对蛋白支架产生反应,因为他们已经做好了对蛋白支架产生反应的准备。这可能会削弱对第二种疫苗所含抗原的免疫反应。Bathe说:"如果想应用这种基于蛋白质的微粒来免疫不同的病毒(如流感),那么免疫系统就会沉迷于它已经看到并产生免疫反应的底层蛋白质支架。这可能会降低机体对实际抗原的抗体反应质量。"作为一种替代方法,Bathe 的实验室一直在开发使用 DNA 折纸制作的支架,这种方法可以精确控制合成 DNA 的结构,并允许研究人员在特定位置附着各种分子,如病毒抗原。在2020 年的一项研究中,巴特和麻省理工学院生物工程及材料科学与工程教授达雷尔-欧文(Darrell Irvine)发现,携带 30 个艾滋病毒抗原拷贝的 DNA 支架可以在实验室培育的 B 细胞中产生强烈的抗体反应。这种结构是激活 B 细胞的最佳选择,因为它与纳米级病毒的结构非常相似,而纳米级病毒的表面会显示许多病毒蛋白的拷贝。Lingwood说:"这种方法建立在B细胞抗原识别的基本原理基础之上,即如果对抗原进行阵列显示,就能促进B细胞的反应,提高抗体输出的数量和质量。"在新的研究中,研究人员换用了由 SARS-CoV-2 原始菌株中尖峰蛋白的受体结合蛋白组成的抗原。在给小鼠注射疫苗时,他们发现小鼠对尖峰蛋白产生了高水平的抗体,但对DNA支架却没有产生任何抗体。与此相反,以一种名为铁蛋白的支架蛋白为基础、涂有 SARS-CoV-2 抗原的疫苗产生了许多针对铁蛋白和 SARS-CoV-2 的抗体。"DNA 纳米粒子本身没有免疫原性,"Lingwood 说。"使用基于蛋白质的平台会对平台和感兴趣的抗原产生同样高滴度的抗体反应,这会使重复使用该平台变得复杂,因为身体会对它产生高亲和力的免疫记忆"。减少这些脱靶效应还有助于科学家们实现开发一种疫苗的目标,这种疫苗可以诱导针对任何变异的 SARS-CoV-2 甚至所有冠状病毒的广泛中和抗体,而冠状病毒是包括 SARS-CoV-2 以及导致 SARS 和 MERS 的病毒在内的病毒亚属。为此,研究人员正在探索一种附有多种不同病毒抗原的 DNA 支架能否诱导出针对 SARS-CoV-2 和相关病毒的广泛中和抗体。编译来源:ScitechDaily ... PC版: 手机版:

封面图片

科学家发现一种研发疫苗的更好方法

科学家发现一种研发疫苗的更好方法 促进血细胞产生针对特定病毒蛋白的抗体是开发人用疫苗的重要一步。这对研究人员来说具有挑战性,因为受试者是否产生抗体取决于科学家如何设计和施用抗原,抗原是他们为测试疫苗有效性而施用的病毒的一部分。病毒研究的一个非常重要的方面是如何表达和纯化用于疫苗接种的抗原。用制备好的抗原对动物进行免疫,动物会产生针对抗原的特异性抗体。但科学家必须分离抗原,以确保他们开发的疫苗能够针对他们希望防治的特定疾病。一旦研究人员纯化了抗原,他们就能研制出疫苗,引导受试者产生所需的抗体。但在尝试开发实验室生产的抗原时,这种分离工作尤其耗时,因为病毒通常会迅速变异。科学家可能需要数周时间才能开发出正确的抗原。科学家们开发出了一种诱导目标特异性免疫反应的新方法。通过将抗原蛋白融合到一种源于四泛蛋白的锚膜结合蛋白中,研究人员创造出了主要显示在人体细胞表面的融合蛋白。载体蛋白将蛋白质暴露在细胞表面,诱导产生针对适当、相关抗原的抗体。另外一个优点是,这些抗原与病毒中的相应蛋白质具有相同的构象和修饰,因为它们是由与病毒自然感染的人体细胞相似的细胞制造的。这种新的显示技术有可能成为一种更可靠的免疫技术。在这项研究中,研究人员能够诱导出针对不同蛋白质的抗体,重点是导致 2019 年冠状病毒病(COVID-19)的SARS-CoV-2 病毒的受体结合域。开发出的锚蛋白使科学家们能够针对特定疾病进行免疫,而无需纯化抗原。研究人员深信,这项技术可以大大加快免疫过程。论文作者之一丹尼尔-伊万诺维奇(Daniel Ivanusic)说:"这项工作基于 SARS-CoV-2 的受体结合结构域,仅仅是一项非常有趣的免疫技术的开端。对我们来说,采用 tANCHOR 技术最具挑战性、最重要也最令人兴奋的应用是诱导针对 HIV-1 的中和抗体。我认为这将是一项伟大的工作!"编译自/scitechdaily ... PC版: 手机版:

封面图片

疫苗研发新突破 保护免疫力低下者免受未接种疫苗者的伤害

疫苗研发新突破 保护免疫力低下者免受未接种疫苗者的伤害 由于接种了疫苗,麻疹于 2000 年被宣布在美国绝迹。现在,麻疹又卷土重来,而且来势汹汹。根据美国疾病控制和预防中心(CDC)的数据,截至 2024 年 6 月 27 日,美国 23 个州共报告了159 例麻疹病例。在这些病例中,84%的患者未接种疫苗或疫苗接种情况"未知";11%的病例接种过一剂疫苗,5%的病例接种过两剂疫苗。近一半(46%)的病例发生在五岁以下的儿童身上。美国并不是唯一面临麻疹复发的国家。在全球范围内,2023年的麻疹病例比上一年增加了 79%。为什么会这样?麻疹病例上升的唯一原因是疫苗接种率下降,损害了群体免疫力。虽然这可以部分归因于 COVID-19 大流行所造成的破坏,但现实情况是,由于反疫苗接种运动,大流行只是加剧了已经出现的下降趋势。现在,由哥伦比亚大学和拉荷亚免疫学研究所领导的一个研究小组找到了一种应对全球麻疹复发的新方法。他们的方法不依赖于使用活病毒,可以保护那些特别容易感染麻疹并将其传染给他人的人。"关于疫苗的错误信息导致世界许多地区疫苗接种不足,"该研究的共同通讯作者、哥伦比亚大学病毒分子发病机理教授 Matteo Porotto 说。"随着越来越多免疫力低下的人无法接种活病毒疫苗,麻疹有了更多传播的机会。"麻疹是世界上传染性最强的病毒之一,美国疾病预防控制中心建议,如果一个人得了麻疹,附近十个人中多达九个人如果没有得到保护都会被感染。最好的保护措施是接种麻疹、腮腺炎和风疹(MMR)疫苗,它能提供持久的保护。接种一剂疫苗对预防麻疹的有效率约为 93%;接种两剂疫苗的有效率约为 97%。泛美卫生组织(PAHO)指出,在美国,第一剂麻疹腮腺炎风疹疫苗的接种率多年来一直在 90% 以上,直到 2019 年才降至 97%,2022 年又降至 85%。为预防麻疹爆发,理想的接种率应在 95% 以上。麻疹也不是无害的皮疹和发烧,几天后就会痊愈;它可能引起严重的并发症,危及生命,包括失明、肺炎和脑部炎症。未接种疫苗的幼儿、孕妇和免疫力低下的人尤其容易感染。免疫力低下的人不能接种目前含有弱化麻疹病毒的活疫苗,因为他们最终可能会感染麻疹。他们处于一种两难的境地:免疫力低下会增加感染麻疹的风险,但由于免疫系统受损,他们又不能接种疫苗。麻疹病毒颗粒的三维图形,显示血凝素蛋白(栗色)和融合蛋白(灰色)。CDC/Allison M. Maiuri, MPH, CHES为了解决这个问题以及麻疹复发的更大问题,研究人员研究了使用活病毒的替代方法。麻疹病毒依赖于其膜上携带的两种蛋白质:血凝素和融合蛋白,血凝素能帮助病毒附着在细胞上,而融合蛋白则能使病毒与细胞融合,从而引发感染。目前的疫苗主要是使人体产生针对血凝素的抗体,而研究人员则把重点放在了另一种重要的病毒亚基上,创造了一种针对融合蛋白的抗体,阻止它与细胞膜融合。在研究过程中,研究人员探讨了治疗麻疹并发症(脑炎或脑部炎症)的方法,这种并发症往往是致命的。他们注意到,这种病症的特点是麻疹病毒变异,其融合蛋白发生了改变。研究人员利用低温电子显微镜(cryo-EM)获得了一系列抗体与病毒相互作用的快照。Porotto说:"我们发现,我们的抗体能结合蛋白质的融合前状态,但并不能完全阻止蛋白质发挥作用。"抗体附着在蛋白质上后,蛋白质转变为中间状态,开始将病毒与细胞膜融合。但这一过程并没有完成,这意味着感染被阻止了。研究人员说,这种中间状态的作用机制使得抗体非常有效,而更好地了解这种机制则为开发新型疫苗和抗病毒药物铺平了道路。由于亚单位疫苗不包含整个病毒,因此对免疫力低下的人来说是安全的。目前,研究人员正在测试一套新型稳定麻疹融合蛋白作为亚单位疫苗的有效性和安全性,该疫苗适用于免疫力低下的人群和接种过疫苗但免疫力下降的人群。这项研究发表在《科学》杂志上。 ... PC版: 手机版:

封面图片

科学家破解 COVID-19 疫苗引发的致命血栓副作用

科学家破解 COVID-19 疫苗引发的致命血栓副作用 腺病毒感染后 VITT 和 VITT 类疾病中抗 PF4 抗体的共同指纹新研究表明,疫苗诱发血栓(VITT)和普通感冒感染引起的类似疾病所涉及的危险的 PF4 抗体具有相同的分子结构,这对未来疫苗开发和疾病管理具有重要意义。弗林德斯大学和全球专家开展的新研究加深了我们对疫苗诱发免疫性血小板减少症和血栓形成(VITT)的认识。在 2021 年COVID-19大流行的高峰期,VITT 被认为是一种与腺病毒载体疫苗(尤其是牛津-阿斯利康疫苗)相关的新病症。研究发现,VITT 是由一种异常危险的血液自身抗体引起的,这种抗体针对一种名为血小板因子 4(或 PF4)的蛋白质。在 2023 年的另一项研究中,来自加拿大、北美、德国和意大利的研究人员描述了一种几乎完全相同的疾病,这种疾病也存在同样的 PF4 抗体,在某些病例中,这种抗体在自然感染腺病毒(普通感冒)后会导致死亡。弗林德斯大学研究人员王晶晶博士和弗林德斯大学教授汤姆-戈登(Tom Gordon)(南澳大利亚州病理学免疫学负责人)于2022年领导了一项先前的研究,破解了PF4抗体的分子密码,并确定了一个与称为IGLV3.21*02的抗体基因有关的遗传风险因素。弗林德斯大学免疫学研究人员 Jing Jing Wang 博士和 Tom Gordon 教授。资料来源:弗林德斯基金会现在,弗林德斯小组与这一国际研究小组合作,发现腺病毒感染相关的 VITT 和传统的腺病毒媒介 VITT 中的 PF4 抗体具有相同的分子指纹或特征。弗林德斯大学研究员王博士是这篇发表在著名的《新英格兰医学杂志》上的新文章的第一作者,他说,这项研究还将对改进疫苗开发产生影响。戈登教授解释说:"这些发现使用了弗林德斯大学开发的一种针对血液抗体的全新方法,表明病毒和疫苗结构上有一个共同的触发因子,会引发病理 pF4 抗体。事实上,这些疾病产生致命抗体的途径几乎完全相同,而且具有相似的遗传风险因素。我们的研究结果具有重要的临床意义,即从 VITT 中吸取的经验教训适用于腺病毒(一种普通感冒)感染后血凝的罕见病例,并对疫苗开发产生影响。"编译来源:ScitechDailyDOI: 10.1056/NEJMc2402592 ... PC版: 手机版:

封面图片

David Baker团队又一突破:首次利用生成式AI设计出全新抗体

David Baker团队又一突破:首次利用生成式AI设计出全新抗体 据 Nature 报道,这一工作提出了将人工智能驱动的蛋白质设计带入价值数千亿美元的治疗性抗体市场的可能性。抗体与流感病毒蛋白结合(来源:Juan Gaertner/Science Photo Library)相关研究论文以“Atomically accurate de novo design of single-domain antibodies”为题,已发表在预印本网站 bioRxiv 上。英国牛津大学免疫信息学家 Charlotte Deane 评价道:“这是一项非常有前景的研究,它代表了将人工智能蛋白质设计工具应用于制造新抗体的重要一步。”让抗体设计更快、更容易抗体是一种免疫分子,能强力附着在与疾病相关的蛋白质上,传统的制造方法包括对动物进行免疫实验或对大量分子进行筛选,昂贵且费时。该论文的共同第一作者、华盛顿大学计算生物化学家 Nathaniel Bennett 认为,能够缩短这些昂贵的人工智能工具有可能“使设计抗体的能力民主化”。在这项工作中,研究团队利用 RFdiffusion 和 RoseTTAFold2 网络,通过计算机模拟和实验验证,成功设计出了全新的抗体 VHH(单域抗体;Variable Heavy-chain of Heavy-chain antibodies)。在整个设计过程中,研究团队充分考虑了抗体与靶标之间的相互作用,力求达到最优的结合效果。据论文描述,RFdiffusion 和 RoseTTAFold2 网络在抗体设计中扮演了至关重要的角色,实现了抗体结构的设计和预测,为全新抗体的生成提供了基础。其中,RFdiffusion 网络主要用于设计全新的抗体结构,特别是针对特定的抗原表位。它可以根据用户指定的抗原表位,设计出具有结合能力的抗体结构。基于 AlphaFold2/RF2 的蛋白质骨架,RFdiffusion 网络使用一系列训练过程来进行蛋白质结构的预测和优化。在训练过程中,该网络通过一系列步骤对蛋白质结构进行噪声处理,并预测去噪后的结构。这些步骤使网络能够学习并优化抗体结构,从而适应特定的抗原表位。通过训练和优化过程,该网络能够生成具有高结合亲和力的抗体结构,从而实现对特定抗原的识别和结合。用于抗体设计的RFdiffusion概述(来源:该论文)RoseTTAFold2 网络则主要用于预测抗体结构,特别是在抗体-抗原复合物中的抗体结构。它能够帮助验证设计的抗体结构与抗原的结合模式是否符合预期。基于 Transformer 神经网络架构,RoseTTAFold2 网络使用大量的蛋白质结构数据进行训练。它通过对蛋白质序列进行序列到序列的预测,从而得到全新的蛋白质 3D 结构。经过微调的RoseTTAFold2能够区分真正的复合物和诱饵复合物(来源:该论文)微调后的RoseTTAFold2与IgFold在抗体单体预测方面的比较(来源:该论文)通过对设计的抗体结构进行预测,研究团队可以更好地了解抗体与抗原之间的相互作用,并验证设计的合理性和有效性。整体上,通过设计和预测抗体结构,RFdiffusion 和 RoseTTAFold2 网络为全新抗体的创新和验证提供了重要支持。人工智能设计的抗体,能用吗?利用这种方法,研究团队设计出了数千种抗体,这些抗体能识别几种细菌和病毒蛋白质(比如流感病毒用来入侵细胞的蛋白质)的特定区域以及一种抗癌药物靶标。然后,他们在实验室中制作了这些设计的一个子集,并测试了这些分子是否能与正确的靶点结合,进而验证了抗体卓越的有效性。例如,表面等离子共振(SPR)等技术,可以验证 VHH 与目标抗原的结合能力。实验结果显示,设计的 VHH 能够与目标抗原特异性结合,并表现出一定的结合亲和力。另外,X 射线晶体学或/和冷冻电镜技术,可以解析 VHH 与目标抗原的复合物结构。结构解析结果显示,设计的 VHH 与目标抗原形成特定的结合模式,VHH 的关键残基与抗原表位发生特异性相互作用,进一步证明了设计的抗体具有与目标抗原结合的能力。最后,通过 SPR 等技术,研究团队对 VHH 与目标抗原的结合亲和力进行了验证。结果显示,设计的 VHH 与目标抗原之间存在一定的结合亲和力,其亲和力值反映了两者之间的结合强度和稳定性。以上这些结果,为设计的抗体的进一步应用和开发提供了重要的实验基础和支持。然而,该研究也存在一些局限性。首先,设计的 VHH 在结合亲和力和特异性方面仍有待进一步优化和提高;其次,设计的 VHH 主要针对单一抗原进行了验证,对于多种抗原或复杂疾病的治疗效果尚待验证;另外,抗体的免疫原性、稳定性和生产成本等方面也需要进一步研究和解决。蛋白质设计,充满无限可能近年来,David Baker 团队一直致力于蛋白质设计研究,且成果显著。图|David Baker2021 年 8 月,团队研发出了一款完全免费的、新的深度学习工具 RoseTTAFold,不仅拥有媲美 AlphaFold2 的蛋白质结构预测超高准确度,而且更快、所需计算机处理能力更低。2021 年 11 月,团队进一步将 AlphaFold 2 与 RoseTTAFold 相结合,成功用于蛋白质-蛋白质复合物结构的预测。去年 4 月,他们在一篇发表在 Science 上的论文中,介绍了如何利用强化学习设计新型蛋白质设计软件,由该方法合成的蛋白质能更有效地在小鼠体内产生有用抗体。他们称,这一突破将会在疫苗领域有所贡献。去年 7 月,他们开发了一个人工智能蛋白质结构预测系统 RoseTTAFold,称可与 AlphaFold 媲美,不仅可以预测蛋白质结构,还能预测蛋白复合物结构。随后,他们也公开了 RFdiffusion 的云版本,将定制蛋白质带入了主流科研界。去年 12 月,团队在 Nature 上发表论文,展示了人工智能技术能够从头设计高亲和力的蛋白,这让科学家们更有可能创造出更便宜的抗体替代品,用于疾病检测和治疗。一项好的科学研究,不仅需要过硬的技术,也同样需要丰富的想象力。未来,抗体及蛋白质设计领域或将充满着无限可能,为人类健康和医学治疗带来新的希望。参考链接: ... PC版: 手机版:

封面图片

科学家研制出一劳永逸的病毒疫苗 不再需要无穷无尽的加强针

科学家研制出一劳永逸的病毒疫苗 不再需要无穷无尽的加强针 这种新策略无需制作所有这些不同的疫苗,因为它针对的是病毒基因组的一部分,而这一部分是所有病毒株所共有的。今天发表在《美国国家科学院院刊》上的一篇论文介绍了这种疫苗、它的工作原理以及它在小鼠身上的疗效。UCR 病毒学家兼论文作者荣海i说:"关于这种疫苗策略,我想强调的是它的广泛性。它广泛适用于任何数量的病毒,对病毒的任何变种都广泛有效,而且对广泛的人群都是安全的。这可能就是我们一直在寻找的通用疫苗。"新的疫苗策略可能意味着对大多数病毒一劳永逸,而不是每年针对不同病毒株进行无休止的加强针注射。图片来源:Aleya Spielman/加州大学洛杉矶分校健康中心传统上,疫苗含有死病毒或经过改良的活病毒。人体的免疫系统会识别病毒中的一种蛋白质,并产生免疫反应。这种反应会产生攻击病毒的 T 细胞,阻止病毒传播。它还会产生"记忆"B 细胞,训练免疫系统保护您免受未来的攻击。新疫苗也使用一种活的改良病毒。不过,它并不依赖于接种者体内具有这种传统的免疫反应或免疫活性蛋白这也是免疫系统发育不全的婴儿或免疫系统负担过重的疾病患者可以使用这种疫苗的原因。取而代之的是,它依赖于小的沉默 RNA 分子。基于 RNA 的疫苗的机制和功效"宿主人、小鼠、任何被感染的人都会产生小干扰 RNA,作为对病毒感染的免疫反应。这些RNAi会击倒病毒,"论文第一作者、加州大学洛杉矶分校微生物学杰出教授丁守为说。"病毒之所以能成功致病,是因为它们能产生阻止宿主 RNAi 反应的蛋白质。如果我们制造一种突变病毒,使其不能产生抑制 RNAi 的蛋白质,我们就能削弱病毒。它可以复制到某种程度,但随后就会输给宿主的RNAi反应,"丁说。"以这种方式削弱的病毒可以用作疫苗,增强我们的RNAi免疫系统。"当研究人员用一种名为"Nodamura"的小鼠病毒对这一策略进行测试时,他们使用的是缺乏T细胞和B细胞的突变小鼠。他们发现,只需注射一次疫苗,小鼠就能在至少 90 天内免受致命剂量的未修改病毒的侵袭。一些研究表明,小鼠的九天大致相当于人类的一年。适合 6 个月以下婴儿使用的疫苗很少。然而,即使是新生小鼠也会产生小的 RNAi 分子,这就是为什么这种疫苗也能保护它们。加州大学河滨分校现已获得这项 RNAi 疫苗技术的美国专利。2013 年,同一研究团队发表的一篇论文显示,流感感染也会诱导我们产生 RNAi 分子。"这就是为什么我们下一步要利用同样的概念生成流感疫苗,从而保护婴儿。如果我们成功了,他们就不必再依赖母亲的抗体了,"丁说。他们的流感疫苗也很可能以喷雾的形式提供,因为很多人对针头有反感。呼吸道感染是通过鼻子传播的,因此喷雾可能是一种更方便的接种方式。此外,研究人员表示,病毒变异以避开这种疫苗接种策略的可能性很小。"病毒可能会在传统疫苗未针对的区域发生变异。然而,我们正在用数千种小 RNA 针对它们的整个基因组。它们无法逃避。"最终,研究人员相信,他们可以"剪切和粘贴"这种策略,制造出适用于各种病毒的一次性疫苗。有几种众所周知的人类病原体:登革热、SARS、COVID-19,它们背后的病毒都具有类似的特性,新的疫苗同样也应该适用于这些病毒。编译来源:ScitechDaily ... PC版: 手机版:

🔍 发送关键词来寻找群组、频道或视频。

启动SOSO机器人