康奈尔大学工程师开发出可在五分钟内完成充电的新型锂电池

康奈尔大学工程师开发出可在五分钟内完成充电的新型锂电池 负责监督该项目的康奈尔大学工程学院院长、工程学教授林登-阿彻(Lynden Archer)说:"与其他障碍(如电池的成本和性能)相比,续航里程焦虑症是交通电气化的更大障碍。如果能在五分钟内为电动汽车电池充电,那就不再需要300英里续航里程的电池了,大可以选择更小的电池,这可以降低电动汽车的成本,使其得到更广泛的采用"。该团队的论文最近发表在《焦耳》杂志上。论文的第一作者是化学与生物分子工程专业的博士生金硕。锂离子电池是电动汽车和智能手机最常用的动力装置之一。这种电池重量轻、性能可靠,而且相对节能。然而,它们充电需要数小时,而且缺乏处理大电流浪涌的能力。研究人员发现,铟是一种特别有前途的快速充电电池材料。铟是一种软金属,主要用于制造触摸屏显示器和太阳能电池板的氧化铟锡涂层。新研究表明,铟作为电池阳极有两个关键特性:迁移能垒极低,这决定了离子在固态中的扩散速度、交换电流密度适中,这与离子在阳极中的还原速度有关。快速扩散和缓慢的表面反应动力学这两种特性的结合对于快速充电和长时间储存至关重要。"关键的创新之处在于我们发现了一种设计原理,可以让电池阳极上的金属离子自由移动,找到合适的配置,然后才参与电荷存储反应,"阿彻说。"最终结果是,在每个充电周期中,电极都处于稳定的形态状态。这正是我们的新型快速充电电池能够在数千次循环中反复充放电的原因所在。"这项技术与道路上的无线感应充电技术相结合,将缩小电池的体积和成本,使电动交通工具成为驾驶者更可行的选择。然而,这并不意味着铟阳极是完美的,甚至是实用的。阿彻说:"虽然这一成果令人兴奋,因为它告诉我们如何获得快速充电电池,但铟是很重的。这就为计算化学建模提供了一个机会,也许可以利用生成式人工智能工具,了解还有哪些轻质材料的化学成分可以达到同样低的达姆克勒数。例如,是否有我们从未研究过的金属合金具有所需的特性?这就是我感到满意的地方,因为有一个普遍原理在起作用,让任何人都能设计出更好的电池阳极,实现比最先进技术更快的充电速率。"编译来源:ScitechDaily ... PC版: 手机版:

相关推荐

封面图片

研究人员开发出可快速充电的钠电池:几秒钟即可充满,性能媲美锂电池

研究人员开发出可快速充电的钠电池:几秒钟即可充满,性能媲美锂电池 Jeung Ku Kang 表示,这种可实现快速充电、能量密度达到 247 Wh/kg、功率密度达到 34748 W / kg 的混合钠离子能量存储装置,标志着能量存储系统突破了现有瓶颈,他预计这项技术将在包括电动汽车在内的各种电子设备中得到广泛应用。

封面图片

韩国研究人员为未来的锂电池开发出一种新型轻质结构

韩国研究人员为未来的锂电池开发出一种新型轻质结构 浦项科技大学(POSTECH)化学系的 Soojin Park 教授和博士生 Dong-Yeob Han 与韩国能源研究所(KIER)的 Gyujin Song 博士以及浦项 N.EX.T HUB 的研究团队合作开发出了一种三维聚合物结构。这种轻质结构有利于锂(Li)离子的传输。他们的研究成果最近发表在国际期刊《先进科学》(Advanced Science)的网络版上。电池技术的进步用于电动汽车和智能手机等电子设备的电池技术不断发展。值得注意的是,锂金属阳极的能量容量为 3860 mAh/g,是目前商业化石墨阳极的十倍以上。锂金属阳极可以在更小的空间内储存更多的能量,而且与石墨或硅不同,锂金属阳极可以作为电极直接参与电化学反应。然而,在充电和放电过程中,锂离子的不均匀分布会产生被称为"死锂"的区域,从而降低电池的容量和性能。此外,当锂向一个方向增长时,它可能会到达相反一侧的阴极,从而造成内部短路。虽然最近的研究重点是优化三维结构中的锂传输,但这些结构大多依赖重金属,大大降低了电池的单位重量能量密度。锂电沉积后的混合结构内部几何形状示意图。资料来源:POSTECH用于阳极的创新型三维结构为了解决这个问题,研究小组利用聚乙烯醇(一种对锂离子具有高亲和力的轻质聚合物)与单壁碳纳米管和纳米碳球相结合,开发出了一种混合多孔结构。这种结构比通常用于电池阳极的铜(Cu)集流体轻五倍以上,对锂离子有很高的亲和力,有利于锂离子通过三维多孔结构中的空隙迁移,实现均匀的锂电沉积。在实验中,采用了该团队三维结构的锂金属阳极电池在经过 200 多次充放电循环后表现出很高的稳定性,并达到了 344 Wh/kg(能量与电池总重量之比)的高能量密度。值得注意的是,这些实验使用的是代表实际工业应用的袋装电池,而不是实验室规模的纽扣电池,这凸显了该技术商业化的巨大潜力。POSTECH 的 Soojin Park 教授表达了这项研究的意义,他说:"这项研究为最大限度地提高锂金属电池的能量密度开辟了新的可能性"。KIER 的 Gyujin Song 博士强调说:"这种结构兼具轻质特性和高能量密度,是未来电池技术的一个突破"。编译来源:ScitechDaily ... PC版: 手机版:

封面图片

哈佛大学科学家开发出一种新型锂电池,充电只需3分钟,寿命长达20年

哈佛大学科学家开发出一种新型锂电池,充电只需3分钟,寿命长达20年 一种 "改变游戏规则 "的电动汽车(EVs)新电池,可在三分钟内完成充电,寿命长达20年,可能很快就会出现在新车上。 位于马萨诸塞州沃尔瑟姆的初创公司Adden Energy已经获得了许可证和515万美元的资金,以便大规模地建造适合电动汽车的电池设计。 该电池由哈佛大学的科学家开发,是金属锂,而不是市场上已经出现的电动汽车中的锂离子。 其复杂的设计,受到BLT三明治的启发,可以防止麻烦的 "树枝状物 "的生长,这些树枝状物在锂金属电池中生长并缩短其寿命。 目前,电动车包含的锂离子电池会随着时间的推移而退化,最多维持7或8年,这取决于它们的使用程度很像智能手机的电池。

封面图片

研究人员利用核磁共振波谱设计更安全、更高性能的锂电池

研究人员利用核磁共振波谱设计更安全、更高性能的锂电池 团队负责人、化学工程副教授劳伦-马贝拉(Lauren Marbella)说:"我们相信,有了我们收集到的所有数据,我们就能帮助加快锂金属电池的设计,并帮助消费者安全地使用这些电池。"使用锂金属阳极而不是石墨阳极的电池,就像我们的手机和电动汽车中使用的电池一样,将使包括半挂卡车和小型飞机在内的电气化交通工具更加经济实惠、用途更加广泛。例如,电动汽车电池的价格会降低,同时续航里程会延长(从 400 公里延长到大于 600 公里)。然而,锂金属电池的商业化仍遥遥无期。锂金属是元素周期表中最活跃的元素之一,在正常使用电池的过程中很容易形成钝化层,影响阳极本身的结构。这种钝化层就像银器或珠宝开始褪色时产生的钝化层,但由于锂的活性非常高,电池中的锂金属阳极一接触电解液就会开始"褪色"。钝化层的化学成分会影响锂离子在电池充电/放电过程中的移动方式,并最终影响系统内部是否会长出导致电池性能不佳的金属丝。迄今为止,测量钝化层(电池界称之为固体电解质相间层(SEI))的化学成分,同时捕捉位于该层中的锂离子如何移动的信息几乎是不可能的。Marbella指出:"如果我们掌握了这些信息,就可以开始将特定的 SEI 结构和特性与高性能电池联系起来。"新研究提炼了近期的研究成果,其中大部分是Marbella小组领导或参与的,并提出了利用核磁共振 (NMR) 光谱方法将锂钝化层的结构与其在电池中的实际功能联系起来的案例。NMR 使研究人员能够直接探测锂离子在锂金属阳极与其钝化层之间的界面上移动的速度,同时还能读出该表面上存在的化合物。虽然电子显微镜等其他表征方法可以提供锂金属表面 SEI 层的清晰图像,但它们无法精确定位无序物种的确切化学成分,也无法"看到"离子传输。其他可以探测锂在界面上传输的技术,如电化学分析,也不能提供化学信息。通过研究Marbella实验室在过去六年中收集的数据,研究小组发现核磁共振可以独特地感知锂金属上 SEI 中化合物结构的变化,这是解释锂金属一些难以捉摸的结构-性能关系的关键。研究人员认为,将核磁共振、其他光谱学、显微镜、计算机模拟和电化学方法等多种技术结合起来,对开发和推进锂金属电池的发展十分必要。当研究人员将锂金属暴露在不同的电解质中时,往往会观察到不同的性能指标。Marbella的核磁共振实验表明,这些性能变化的产生是因为不同的电解质成分会产生不同的 SEI 成分,并以不同的速率将锂离子输送到阳极表面。具体来说,当锂电池性能提高时,锂与表面的交换率也会增加。他们现在还能看到钝化层应该如何布置。为了达到最佳性能,不同的化合物必须在 SEI 中层层叠加,而不是随机分布。新研究中展示的交换实验可被材料科学家用于帮助筛选高性能锂金属电池的电解质配方,以及确定高性能所需的 SEI 表面化合物。Marbella 补充说,核磁共振是唯一能探测 SEI 中化合物局部结构变化的技术之一(如果不是唯一的话),它能解决离子绝缘材料如何在 SEI 中实现快速锂离子传输的问题。一旦知道发生了哪些结构变化例如,氟化锂等是否变得无定形、有缺陷、纳米大小那么我们就可以有意识地对这些变化进行工程设计,并设计出符合商业化所需的性能指标的锂金属电池。核磁共振实验是为数不多的能够完成这项任务的实验之一,它为我们提供了推动负极表面设计向前发展所必需的信息。展望未来,Marbella 的研究小组将继续把核磁共振与电化学结合起来,加深对锂金属电池不同电解质中 SEI 成分和特性的了解。他们还在开发各种方法,以确定单个化学成分在促进锂离子通过 SEI 传输方面的作用。编译来源:ScitechDaily ... PC版: 手机版:

封面图片

着火事故频发 电动自行车锂电池安全技术规范最新发布 11月实施

着火事故频发 电动自行车锂电池安全技术规范最新发布 11月实施 该《技术规范》将于2024年11月1日正式实施。据介绍,电动自行车使用的蓄电池主要有铅蓄电池和锂离子蓄电池两种。国内主要电动自行车品牌发布的电动自行车新车型中,配备锂离子蓄电池的比例已经超过20%。《技术规范》从单体电池和电池组两个层面规定了适用于《电动自行车安全技术规范》(GB 17761)的电动自行车用锂电池的安全要求和试验方法。其中单体电池方面主要考虑了过充电、过放电、外部短路、热滥用、针刺、标志6项安全要求;电池组主要考虑了电气安全、机械安全、环境安全、热扩散、互认协同充电、数据采集、标志等7个方面22项安全要求。常见的电动自行车用锂离子蓄电池主要有锰酸锂电池、磷酸亚铁锂电池和三元锂电池等。其中三元锂电池又可以分为高镍体系的镍钴锰电池、镍钴铝电池以及无镍的磷酸锰铁锂电池等。《技术规范》针对单体电池规定了严格的过充电(1.5倍)、针刺等测试,高镍体系三元锂电池很难通过上述测试,今后将难以应用在电动自行车领域。《技术规范》仅适用于GB 17761《电动自行车安全技术规范》中规定的、最大输出电压不超过60V的电动自行车用锂离子蓄电池。不适用于电动滑板车、平衡车、电动摩托车、电动三轮车等车辆使用的锂离子蓄电池。工信部表示,《技术规范》作为电动自行车用锂离子蓄电池安全强制性国家标准,对规范电动自行车用锂离子蓄电池产品设计、生产和销售,提升产品质量安全水平具有重要意义,将促进电动自行车行业健康有序发展。 ... PC版: 手机版:

封面图片

采用新型电沉积方法的全固态电池技术取得突破

采用新型电沉积方法的全固态电池技术取得突破 通过底部电沉积机制稳定锂金属阳极全固态电池的示意图。资料来源:POSTECH应对电池安全挑战在电动汽车和储能系统等各种应用中,二次电池通常依赖于液态电解质。然而,液态电解质的易燃性带来了火灾风险。这促使人们不断努力探索在全固态电池中使用固态电解质和金属锂(Li),从而提供更安全的选择。在全固态电池的运行过程中,锂被镀在阳极上,利用电子的运动产生电力。在充电和放电过程中,锂金属会经历失去电子、转化为离子、重新获得电子和电沉积回金属形态的循环过程。然而,锂的任意电沉积会迅速耗尽可用的锂,导致电池的性能和耐用性大幅降低。阳极保护的创新为解决这一问题,研究团队与浦项制铁 N.EX.T Hub 合作开发了一种由功能粘合剂(PVA-g-PAA)[2]组成的全固态电池阳极保护层。该层具有优异的锂转移特性,可防止随机电沉积并促进"底部电沉积"过程。这可确保锂从阳极表面底部均匀沉积。研究小组利用扫描电子显微镜(SEM)进行了分析,证实了锂离子的稳定电沉积和分离[3]。这大大减少了不必要的锂消耗。研究小组开发的全固态电池还证明,即使锂金属薄至 10 微米(μm)或更薄,也能长时间保持稳定的电化学性能。领导这项研究的 Soojin Park 教授表达了他的承诺,他说:"我们通过一种新颖的电沉积策略设计出了一种持久的全固态电池系统。通过进一步研究,我们的目标是提供更有效的方法来提高电池寿命和能量密度。在合作研究成果的基础上,浦项制铁控股公司计划推进锂金属阳极的商业化,这是下一代二次电池的核心材料。"说明电沉积通过电解液中的电流将金属沉积到浸没在电解液中的电极上的方法PVA-g-PAA聚(乙烯醇)-接枝-聚(丙烯酸)脱离脱离或分离,金属锂失去电子并转化为锂离子的现象编译自:ScitechDaily ... PC版: 手机版:

🔍 发送关键词来寻找群组、频道或视频。

启动SOSO机器人