NASA正在开发用于深空探索的太阳帆技术

NASA正在开发用于深空探索的太阳帆技术 美国国家航空航天局(NASA)正在开发用于深空探索的太阳帆技术。这种创新的推进系统以太阳光从其表面反射为动力,最近达到了新的就绪水平,使其适用于未来的科学任务。太阳帆提供了一种无燃料、环保的推进方法,能够将低质量任务推进到新颖的轨道和遥远的行星上。资料来源:美国国家航空航天局NASA技术专家莱斯-约翰逊(Les Johnson)年轻时曾被杰里-波内尔(Jerry Pournelle)和拉里-尼文(Larry Niven)于 1974 年合著的小说《上帝眼中的污点》(The Mote in God's Eye)深深吸引,小说中一艘由太阳帆推动的外星飞船拜访了人类。今天,约翰逊和美国国家航空航天局的一个团队正准备测试类似的技术。NASA继续推出太阳帆技术计划,将其作为一种前景广阔的深空运输方法。1 月份,该机构成功部署了四个相同的太阳帆四象限中的一个,从而实现了一个关键的技术里程碑。1 月 30 日,在科罗拉多州朗蒙特的 Redwire 公司新工厂展示了这一部署。美国国家航空航天局位于阿拉巴马州亨茨维尔的马歇尔太空飞行中心领导着太阳帆团队,该团队由主承包商Redwire和分包商NeXolve组成,前者开发了部署机制和近100英尺长的吊杆,后者提供了帆膜。除了领导该项目,马歇尔还开发了太阳帆在太空飞行时控制和导航所需的算法。2022 年 10 月 13 日,NASA 和行业合作伙伴在马歇尔太空飞行中心使用两个 100 英尺长的轻质复合吊杆首次展开了 4300 平方英尺的帆板四象限,使其成为当时部署的最大的太阳能帆板四象限。2024 年 1 月 30 日,NASA 在科罗拉多州朗蒙特的 Redwire 新工厂成功部署了四个完全相同的太阳帆四象限中的一个,实现了关键技术的里程碑。资料来源:美国国家航空航天局太阳帆技术及其进步太阳能帆的概念简单而具有革命性。它的工作原理是利用太阳光的反射进行推进,类似于风力推动帆船。虽然在 Redwire 的部署中只展开了帆的四分之一,但完全展开后,整个帆的面积将达到 17780 平方英尺,厚度不到头发丝的 2.5 微米。风帆由涂有铝的聚合物材料制成。美国国家航空航天局科学任务局最近资助太阳帆技术达到新的技术就绪水平(TRL 6),这意味着该技术已准备就绪,可以提出在科学任务中飞行的建议。约翰逊在马歇尔大学从事风帆技术研究已有 25 年之久,他说:"这是在准备将其用于太空任务之前,在地面上迈出的重要的最后一步。下一步就是科学家们提出在他们的任务中使用太阳帆。我们已经实现了目标,并证明我们已经做好了飞行的准备。"穿越深空的太阳帆为使用该技术的飞行任务提供了许多潜在的好处,因为它不需要任何燃料,只需很小的质量就能实现很高的推进性能。这种太空推进系统非常适合在新轨道上执行低质量任务。约翰逊说:"一旦脱离地球引力进入太空,最重要的是效率和足够的推力,以便从一个位置到达另一个位置。""太阳能帆通过反射太阳光来实现这一目标帆的尺寸越大,就能提供越大的推力"。- 莱斯-约翰逊,美国国家航空航天局技术专家未来应用和环境效益利用太阳帆技术进行的一些有意义的飞行任务包括研究空间天气及其对地球的影响,或对太阳南北两极进行高级研究。后者受到了限制,因为将航天器送入环绕太阳的极地轨道所需的推进力非常大,使用当今大多数推进系统根本不可行。考虑到金星或水星离太阳很近,而且太阳帆在那里更强烈的阳光下会产生更大的推力,因此太阳帆推进也有可能加强未来前往金星或水星的飞行任务。2024 年 1 月 30 日,美国国家航空航天局马歇尔太空飞行中心的技术专家莱斯-约翰逊(Les Johnson)和莱斯利-麦克纳特(Leslie McNutt)在 Redwire Space 公司成功完成太阳帆部署测试。美国国家航空航天局在科罗拉多州朗蒙特的 Redwire 新设施成功部署了四个完全相同的太阳帆四象限中的一个,实现了关键技术的里程碑。图片来源:红线太空公司此外,这是一种终极的绿色推进系统,约翰逊说只要太阳在发光,太阳帆就有推进力。在阳光较弱的地方,他设想未来可以使用激光将太阳帆加速到高速,将其推到太阳系外,甚至更远的地方,也许是另一颗恒星。"未来,我们可能会在太空中放置大型激光器,当太阳帆离开太阳系时,将光束照射到太阳帆上,将它们加速到越来越高的速度,直到最终它们的速度足以在合理的时间内到达另一颗恒星。" ... PC版: 手机版:

相关推荐

封面图片

NASA先进复合太阳帆任务成功与地面建立通信联系

NASA先进复合太阳帆任务成功与地面建立通信联系 这幅艺术家的概念图展示了利用太阳能量在太空中航行的先进复合太阳帆系统航天器。图片来源:NASA/Aero Animation/Ben Schweighart航天器被成功送入一种称为太阳同步轨道的低地球轨道。所有系统都显示航天器运行正常。美国东部时间凌晨2:30,微波炉大小的立方体卫星飞越了位于加利福尼亚州圣克拉拉市圣克拉拉大学机器人系统实验室的地面中枢,任务小组确认双向通信成功。接下来,立方体卫星将经历一到两个月的调试阶段,为太阳帆的展开和操纵测试做准备。此时,太阳帆仍在立方体卫星的主体内。在所有调试任务完成后,任务运行团队将确定展开太阳帆的日期。一旦准备就绪,航天器将通过四根横跨正方形对角线的吊杆展开太阳能帆板,展开后的帆板长达 23 英尺(约 7 米)。美国国家航空航天局艾姆斯分局负责管理先进复合太阳帆系统项目,并设计和建造了机载照相诊断系统。美国国家航空航天局兰利分局设计并制造了可展开的复合吊杆和太阳帆系统。NASA的小型航天器技术(SST)项目办公室设在NASA艾姆斯,由该机构的空间技术任务局(STMD)领导,负责资助和管理这项任务。NASA STMD 的 Game Changing Development 计划开发了可部署复合吊杆技术。加利福尼亚州长滩的 Rocket Lab USA 公司提供发射服务。NanoAvionics 公司提供航天器总线。编译来源:ScitechDaily ... PC版: 手机版:

封面图片

NASA先进复合太阳帆系统 (ACS3)成功发射

NASA先进复合太阳帆系统 (ACS3)成功发射 美国国家航空航天局(NASA)的先进复合太阳帆系统 (ACS3)虽然只有烤面包机大小,却能在约25分钟内展开微薄的塑料帆,覆盖面积达860平方英尺(80平方米),帆杆从手掌大小展开到23英尺(7米)长。这并不是第一个被送入太空的太阳能帆,但其由轻质聚合物复合材料制成并经过特别配置以平放的吊杆,在使这种帆更轻更稳方面迈出了重要一步。由于技术故障,"电子"号火箭推迟了 32 分钟才发射,随后,ACS3 和韩国科学技术高等研究院(KAIST)的 NEONSAT-1 号地球观测卫星升空。火箭通过发射台后,在 55 秒时进入超音速状态,并在 1 分 7 秒时通过 Max-Q。第一级发动机在飞行开始后 2 分 24 秒关闭,4 秒后第二级分离,3 秒后第二级点火。9分11秒时,第二级发动机关闭,4秒后"踢"级分离。第一级随后执行了一次轨道机动,将其送入地球大气层燃烧,而不是成为太空碎片。任务开始 50 分钟后,NEONSAT-1 进入 323 英里(520 公里)的环形地球轨道。ACS3 在发射后 1 小时 45 分钟才进入高度为 600 英里(1000 公里)的太阳同步轨道。这得益于"Kick Stage"级的Curie火箭引擎,它可以多次重新启动,在没有自身机载推进器的情况下将有效载荷送入不同的轨道。任务完成后,Kick Stage也会自行进入大气层燃烧轨道。美国国家航空航天局(NASA)太阳帆任务的数据将用于改进帆的设计,帆的面积将扩大到 21500 平方英尺(2000 平方米),相当于一个足球场的一半大小。这些巨型风帆可以捕捉太阳风,并像陆地帆船一样进行转向,从而可以在不需要推进剂的情况下以极快的速度执行远程飞行任务。 ... PC版: 手机版:

封面图片

NASA确认前往土卫六进行科学探索的"蜻蜓"任务

NASA确认前往土卫六进行科学探索的"蜻蜓"任务 蜻蜓号翱翔在土星卫星土卫六沙丘上空的艺术印象。该任务由约翰-霍普金斯应用物理实验室管理,涉及多个合作伙伴,旨在利用将于2034年抵达土卫六的旋翼机研究前生物化学过程。资料来源:美国国家航空航天局/约翰-霍普金斯应用物理实验室/史蒂夫-格里本位于华盛顿的美国宇航局总部科学任务局副局长尼基-福克斯(Nicky Fox)说:"蜻蜓号是一项引人注目的科学任务,受到了社会各界的广泛关注,我们很高兴能在这项任务中采取下一步行动。探索土卫六将推动我们在地球之外利用旋翼机所能做的事情的极限。"2023 年初,飞行任务顺利通过了初步设计审查的所有成功标准。不过,当时要求任务发起方制定最新的预算和时间表,以适应当前的资金环境。这一更新计划于 2023 年 11 月提交并获得有条件批准,等待 2025 财年预算进程的结果。与此同时,NASA授权其进行最终设计和制造工作,以确保如期完成任务。随着总统 2025 财年预算申请的公布,"蜻蜓"号的生命周期总成本确定为 33.5 亿美元,发射日期为 2028 年 7 月。这反映出成本比拟议成本增加了约两倍,并且比最初于 2019 年选定该任务时推迟了两年多。在选定之后,由于 2020 至 2022 财年的资金限制,NASA 不得不指示该项目进行多次重新规划。由于COVID-19大流行、供应链增加以及深入设计迭代的结果,该项目产生了额外费用。为了弥补延迟抵达土卫六的损失,美国航天局还为重型运载火箭提供了额外资金,以缩短飞行任务的巡航阶段。这架名为蜻蜓的旋翼机计划于2034年抵达土卫六,将飞往月球上数十个有考察价值的地点,寻找土卫六和早期地球上生命形成之前常见的前生物化学过程。"蜻蜓"标志着美国国家航空航天局在另一个行星体上驾驶科学飞行器。这架旋翼机有八个旋翼,飞行起来就像一架大型无人机。蜻蜓号的设计和建造由位于马里兰州劳雷尔的约翰霍普金斯应用物理实验室(APL)负责,该实验室为美国国家航空航天局管理这项任务。APL 的 Elizabeth Turtle 是首席研究员。该团队的主要合作伙伴包括位于马里兰州格林贝尔特的美国国家航空航天局戈达德太空飞行中心、位于科罗拉多州利特尔顿的洛克希德-马丁航天公司、位于加利福尼亚州硅谷的美国国家航空航天局艾姆斯研究中心、位于弗吉尼亚州汉普顿的美国国家航空航天局兰利研究中心、位于宾夕法尼亚州州立学院的宾夕法尼亚州立大学以及位于圣迭戈的马林太空科学系统公司;位于加利福尼亚州圣迭戈的马林空间科学系统公司、位于加利福尼亚州帕萨迪纳的蜜蜂机器人公司、位于南加州的美国宇航局喷气推进实验室、位于巴黎的法国国家空间研究中心(CNES)、位于德国科隆的德国航空航天中心(DLR)以及位于东京的日本宇宙航空研究开发机构(JAXA)。蜻蜓号是美国国家航空航天局"新前沿计划"的第四项任务,由位于阿拉巴马州亨茨维尔的美国国家航空航天局马歇尔太空飞行中心为华盛顿的美国国家航空航天局科学任务局管理。编译来源:ScitechDaily ... PC版: 手机版:

封面图片

NASA推出航天器工程增强现实技术 大大节省时间和成本

NASA推出航天器工程增强现实技术 大大节省时间和成本 戈达德太空飞行中心的美国国家航空航天局(NASA)技术人员正在使用先进的 AR 头戴式设备和其他技术来改进罗曼太空望远镜的组装过程。这种方法可以精确对齐零件,节省时间并降低成本。AR、二维码和机器人技术的整合不仅简化了施工过程,还促进了远程协作,提高了安装精度。资料来源:美国国家航空航天局戈达德太空飞行中心位于马里兰州格林贝尔特的美国国家航空航天局戈达德太空飞行中心正在组装罗曼太空望远镜,增强现实工具帮助技术人员提高了装配检查的准确性并节省了时间。有一次,将罗曼推进系统的数字模型操纵到真实的望远镜结构中,发现计划的设计无法与现有的线路相匹配。这一发现有助于避免重建任何组件。戈达德负责该 AR 项目的研发团队认为,未来更广泛地采用该技术可能会节省数周的施工时间和数十万美元。这张照片拍摄于2024年2月29日,在位于马里兰州格林贝尔特的美国宇航局戈达德太空飞行中心,工程师和技术人员正在将罗曼太空望远镜的推进系统放置在航天器总线下。工程师们使用增强现实工具为组装做准备。图片来源:NASA/Chris Gunn创新航天器组装技术在马里兰州格林贝尔特的美国国家航空航天局戈达德太空飞行中心,技术人员使用先进的测量设备、增强现实头盔和二维码,在建造或移动一些罗曼太空望远镜结构之前,虚拟检查这些结构是否合适。"与以前的技术相比,我们能够更快、更准确地在三维空间中放置传感器、安装接口和其他航天器硬件,"NASA戈达德工程师罗恩-格伦(Ron Glenn)说。"这对任何项目的成本和进度都大有裨益"。通过将数字模型投射到现实世界,技术人员可以对齐零件并查找它们之间可能存在的干扰。此外,AR 平视显示器还能精确定位飞行硬件的装配位置,精度可达千分之一英寸。在位于马里兰州格林贝尔特的美国国家航空航天局戈达德太空飞行中心最大的洁净室里,工程师们戴着增强现实头盔,在脚手架设计搭建之前测试其位置,以确保准确安装。资料来源:美国国家航空航天局航天器增强现实技术的进步格伦说,他的团队利用美国国家航空航天局(NASA)的内部研发计划,在美国国家航空航天局戈达德分局(NASA Goddard)的一个帮助罗曼建造飞船的项目中,不断寻找新的方法来改进 NASA 利用 AR 技术建造飞船的方式。团队取得的成果远远超过了他们最初想要证明的。他说:"最初的项目目标是利用增强现实技术开发增强型装配解决方案,并找出我们是否可以消除昂贵的制造时间。我们发现团队可以做得更多。"利用 AR 和机器人技术提高效率例如,工程师使用机械臂进行精确测量和三维激光扫描,绘制了罗曼号复杂的线束和航天器结构内的体积。团队工程师埃里克-布鲁内(Eric Brune)说:"将罗曼推进器组件的虚拟模型操纵到该框架中,我们发现了它与现有线束相互干扰的地方。在制造推进器组件之前对其进行调整,使任务避免了昂贵而耗时的延误。罗曼号的推进系统已于今年早些时候成功集成。Brune 补充说,考虑到设计、建造、移动、重新设计和重建所需的时间,他们的工作为多名工程师和技术人员节省了许多工作日。团队工程师亚伦-桑福德(Aaron Sanford)说:"我们发现了这些技术组合的许多额外优势。其他地点的合作伙伴可以直接通过技术人员的视角进行协作。使用 QR 码进行元数据存储和文件传输又增加了一层效率,使相关信息的快速访问触手可及。为逆向工程和先进结构开发 AR 技术开辟了培训和文档编制等多种可能性"。罗曼太空望远镜是美国国家航空航天局的一项任务,旨在探索暗能量、系外行星和红外天体物理学。罗曼号计划于 2027 年 5 月发射。它配备了强大的望远镜和先进的仪器,旨在揭开宇宙的神秘面纱,扩大我们对宇宙现象的了解。资料来源:美国国家航空航天局戈达德太空飞行中心未来应用和成本节约通过这些技术,可以共享部件和装配的三维设计,或从远程位置进行虚拟移交。这些技术还可以实现移动和安装结构的试运行,并有助于在部件制造完成后捕捉精确的测量结果,以便与设计进行比较。桑福德说,加入精密激光跟踪器后,就无需再制作复杂的物理模板,以确保部件准确安装在精确的位置和方向上。甚至连技术人员是否能在结构内部伸出手臂转动螺栓或操作部件等细节,都可以在施工前通过增强现实技术解决。在施工过程中,佩戴耳麦的工程师可以通过手势参考重要信息,如各个螺栓的扭矩规格。事实上,工程师可以做到这一点,而无需停下来在其他设备或纸质文件中查找信息。未来,该团队希望能够帮助整合各种组件、进行检查并记录最终施工情况。桑福德说:"这是一种文化转变。采用这些新工具需要时间"。格伦说:"它将帮助我们快速生产航天器和仪器,节省数周时间,并可能节省数十万美元。这使我们能够将资源返还给机构,以开发新的任务"。该项目是美国国家航空航天局 2024 财年戈达德中心创新基金项目组合的一部分。中心创新基金隶属于美国宇航局空间技术任务局,旨在激发和鼓励美国宇航局各中心的创造力和创新力,同时满足美国宇航局和国家的技术需求。编译自/scitechdaily ... PC版: 手机版:

封面图片

NASA正在资助一些看上去只会出自科幻小说的项目

NASA正在资助一些看上去只会出自科幻小说的项目 月球铁路系统,流体望远镜,将人类和货物运往火星的运输系统。这些都是美国国家航空航天局创新先进概念(NIAC)计划拨出资金继续研究的项目。共有六个项目,每个项目都已完成了最初的 NIAC 阶段。目前,这些概念研究已进入第二阶段,将获得高达 60 万美元的资金,用于在未来两年内继续开展工作。不过,不要指望它们能很快实现。它们仍处于探索阶段,不能保证一定会实现。尽管如此,它们正在沿着必要的道路前进,如果进入最后的 NIAC 阶段,未来的航空航天任务就会考虑它们。美国国家航空航天局(NASA)华盛顿总部的NIAC项目执行官约翰-尼尔森说:"我们的NIAC研究员从未停止过惊奇和灵感,这个团队无疑给NASA带来了很多思考,让我们看到了未来的可能。"推进太空研究的一个基本要求是开发出更大的望远镜。美国国家航空航天局(NASA)的爱德华-巴拉班(Edward Balaban)表示,遗憾的是,将目前的太空望远镜技术扩展到 10 米以上的孔径尺寸在经济上似乎并不可行。"因此,有必要寻找具有成本效益的解决方案,将太空望远镜扩展到更大的尺寸"。FLUTE 项目提出了一个潜在的解决方案,旨在建立具有大孔径或非分块液体主反射镜的太空观测站。巴拉班解释说,这种反射镜将在微重力环境下利用流体塑形技术在太空中形成。这一概念已经在实验室中性浮力环境、抛物线微重力飞行和国际空间站上得到了验证。美国航天局的另一个项目是脉冲等离子体火箭。简而言之,目前还没有一种技术能够高效、快速地将人类和货物运送到遥远的太空中。能够产生大推力和高比冲的推进系统可以完成这一任务,但正如刚才提到的,目前还没有这样的技术。豪氏公司的布里安娜-克莱门茨(Brianna Clements)表示,豪氏工业公司目前正在开发一种推进系统,该系统可产生高达 100000 牛顿的推力和 5000 秒的比冲(Isp)。她写道:"PPR 性能卓越,将高 Isp 和大推力结合在一起,有望彻底改变太空探索,"她指出,该系统可以在短短两个月内完成载人火星任务。美国国家航空航天局(NASA)喷气推进实验室的伊桑-沙勒(Ethan Schaler)介绍说,NASA还计划建造首个月球铁路系统,以方便在月球上运输有效载荷。该系统被简称为"FLOAT",它将利用无动力磁性机器人,通过二磁悬浮技术悬浮在三层柔性薄膜轨道上。这包括一个柔性电路层,它能产生电磁推力,推动机器人沿着轨道前进;还有一个可选的薄膜太阳能电池板层,它能在阳光照射下为基地发电。美国国家航空航天局(NASA)对该项目寄予厚望,认为这种运输系统对于 2030 年代可持续月球基地的日常运作至关重要,正如 NASA 的"月球到火星"计划和"机器人月球表面操作 2"等任务概念所概述的那样。 ... PC版: 手机版:

封面图片

观看直播:实时体验 NASA 国际空间站成员太空漫步的惊险

观看直播:实时体验 NASA 国际空间站成员太空漫步的惊险 图为2018年6月14日,美国国家航空航天局宇航员德鲁-费斯特尔(Drew Feustel)在与同行的美国国家航空航天局宇航员里基-阿诺德(Ricky Arnold)(画面外)进行太空行走时,被拴在国际空间站的"探索"气闸外。图片来源:美国国家航空航天局美国国家航空航天局(NASA)将对宇航员在国际空间站外进行的两次太空行走进行现场直播,这两次太空行走分别定于 6 月 24 日星期一和 7 月 2 日星期二进行。第一次太空行走计划于美国东部时间6 月 24 日上午 8 点开始,持续约六个半小时。美国国家航空航天局将从早上6:30开始进行现场直播。NASA 将在 NASA+、NASA 电视的公共频道、NASA应用程序、YouTube 和该机构的网站上播放太空行走。了解如何通过包括社交媒体在内的各种平台播放NASA TV。美国国家航空航天局(NASA)宇航员特蕾西-C-戴森(Tracy C. Dyson)和迈克-巴拉特(Mike Barratt)届时将离开空间站的探索号气闸,完成从空间站右舷桁架上的通信天线上拆除一个故障电子盒(称为射频组)的工作。他们还将收集样本进行分析,以了解微生物在轨道实验室外部生存和繁殖的能力。图为2023年1月20日,美国国家航空航天局(NASA)宇航员、第68远征队飞行工程师妮可-曼(Nicole Mann)在她的首次太空行走中穿着舱外移动装置(即太空服)。她和日本宇宙航空研究开发机构的太空行走队员若田光一(Koichi Wakata)(框外)在国际空间站的右舷桁架结构上安装了一个改装套件,以便将来安装轨道实验室的下一个太阳能电池阵列。图片来源:美国国家航空航天局戴森将担任太空行走1号队员,并将穿上带有红色条纹的太空服。巴拉特(Barratt)将担任太空行走2号队员,并将穿着无标记的太空服。美国太空行走90将是戴森的第四次太空行走,也是巴拉特的第三次太空行走。这是为支持空间站组装、维护和升级而进行的第271次太空行走。美国太空行走90最初定于6月13日进行,但由于宇航服不适问题,未能如期进行。美国国家航空航天局宇航员迈克-霍普金斯(Mike Hopkins),远征 38 号飞行工程师,2013 年 12 月 24 日,太空行走。图片来源:美国国家航空航天局第二次太空行走定于7月2日上午9时开始,将持续约六个半小时。宇航员将拆除和更换一个陀螺仪组件,重新安置一个天线,并为未来阿尔法磁谱仪的升级做好准备。美国国家航空航天局(NASA)将在 NASA+、NASA 电视台公共频道、NASA应用程序、YouTube 和该局网站上播放太空行走视频。美国太空行走90完成后,NASA将向参加美国太空行走91的机组成员通报最新情况。这是支持空间站的第272次太空行走。编译来源:ScitechDaily ... PC版: 手机版:

🔍 发送关键词来寻找群组、频道或视频。

启动SOSO机器人