科学家发现可对抗 COVID-19 的新型抗病毒药物

科学家发现可对抗 COVID-19 的新型抗病毒药物 研究小组在发表于《自然》(Nature)杂志的论文中报告说,SARS-CoV-2(引起COVID-19的病毒)激活了细胞中的一种途径,阻止了正常免疫反应的关键部分过氧化物酶体和干扰素的产生。研究小组成功测试了一种新型抗病毒药物,这种药物能刺激干扰素的产生,从而逆转这种效应。第一作者、医学和牙科学院细胞生物学教授汤姆-霍布曼(Tom Hobman)解释说,干扰素通过关闭受感染细胞来阻止受感染细胞产生更多病毒,这通常会导致细胞死亡,然后作用于周围细胞,防止它们受到感染。这篇论文建立在他的团队 早期研究该研究表明,HIV 是如何进化到激活细胞中的 Wnt/β-catenin 信号通路,从而阻止机体产生过氧化物酶体,而过氧化物酶体能触发干扰素的产生。研究人员认为,另一种RNA病毒 SARS-CoV-2 也会以类似的方式对抗人体的抗病毒反应。药物检测取得可喜成果在这项研究中,研究小组尝试了40种针对Wnt/β-catenin信号通路的现有药物。大多数药物最初都是为治疗癌症而开发和测试的,癌症通常会对干扰素分泌的增加做出反应。其中三种药物大大减少了肺部发现的病毒数量,其中一种药物还能有效减轻小鼠的炎症和其他临床症状。霍布曼说:"我们看到,在某些情况下,试管中产生的病毒数量减少了 1 万倍。"在病毒爆发期间,可能已经接触到病毒或已经出现早期症状的人将服用四到五天的疗程,以提高他们的过氧化物酶体水平,限制疾病的严重程度和传播。这种方法的优点在于,在没有病毒感染的情况下,不会产生干扰素。研究人员认为这些药物有可能成为抗击新出现病毒的一线药物。编译自:ScitechDaily ... PC版: 手机版:

相关推荐

封面图片

科学家竞相完善有望取代Paxlovid的新型COVID-19口服药

科学家竞相完善有望取代Paxlovid的新型COVID-19口服药 他们发表在《科学》杂志上的报告显示,一种替代药物病毒木瓜蛋白酶样蛋白酶抑制剂能抑制动物的疾病进展,这是人类药物试验前的必要步骤。该研究的资深作者、罗格斯大学欧内斯特-马里奥药学院研究实验室副教授王军(音译)说:"COVID-19仍然是全美第三大死亡原因,因此,我们已经非常需要更多的治疗方案。当 COVID-19 不可避免地发生突变,导致 Paxlovid 无法发挥作用时,这种需求将变得更加迫切。"罗格斯大学的研究小组希望研制出一种能干扰病毒木瓜蛋白酶(PLpro)的药物,这种蛋白在所有已知的 COVID-19 株系中都发挥着重要功能。制作这种药物需要有关 PLpro 结构的详细信息,而王军的团队从罗格斯大学先进生物技术和医学中心 (CABM) 的 Arnold 实验室获得了这些信息。对 PLpro 结构的精确了解使王军的团队能够设计和合成 85 种候选药物,这些药物将与这一重要蛋白质结合并对其产生干扰。PLpro晶体结构显示了候选药物分子与蛋白质靶点结合的意想不到的排列方式,这为王教授的药物化学团队提供了创新的设计思路,CABM和罗格斯大学化学与化学生物学系教授Eddy Arnold说,"PLpro晶体结构显示了候选药物分子与蛋白质靶点结合的意想不到的排列方式,这为王教授的药物化学团队提供了创新的设计思路,"Eddy Arnold说。实验室测试表明,这些候选药物中最有效的是一种名为 Jun12682 的化合物,它能抑制几种SARS-CoV-2病毒株,包括能抵抗 Paxlovid 治疗的病毒株。俄克拉荷马州立大学的Deng实验室随后对感染 SARS-CoV-2 的小鼠进行的测试表明,口服 Jun12682 可以减少病毒的肺负荷和病变,同时提高存活率。王说:"我们在小鼠身上的治疗效果与 Paxlovid 在最初动物试验中的效果差不多。Paxlovid会干扰许多处方药,而大多数面临严重COVID-19最高风险的人都会服用其他处方药,因此这确实是个问题,我们针对主要的药物代谢酶测试了我们的候选药物Jun12682,没有证据表明它会干扰其他药物。"罗格斯大学已为 Jun12682 和其他 84 种候选药物提交了专利申请,并正在寻找合作伙伴,以帮助候选药物进入进一步的测试和开发阶段。编译来源:ScitechDailyDOI: 10.1126/science.adm9724 ... PC版: 手机版:

封面图片

远古海洋和行星碰撞的遗迹 科学家揭开地球神秘"D"层的新面纱

远古海洋和行星碰撞的遗迹 科学家揭开地球神秘"D"层的新面纱 与完美的球体不同,D"层出人意料地错落有致。它的厚度因地而异,有些地区甚至完全没有"D"层就像大陆高出地球海洋一样。这些有趣的变化吸引了地球物理学家的注意,他们将 D"层描述为一个异质或非均匀区域。由胡青阳博士(高压科学与技术高等研究中心)和邓杰博士(普林斯顿大学)领导的一项新研究表明,"D"层可能起源于地球的早期。他们的理论基于"巨型撞击假说"(Giant Impact hypothesis),该假说认为一个火星大小的天体撞击了原地球,在撞击后形成了一个覆盖整个地球的岩浆海洋。他们认为,"D"层可能是这一巨大撞击留下的独特成分,可能蕴藏着地球形成的线索。邓杰博士强调,在这个全球岩浆海洋中存在大量的水。这些水的确切来源仍是一个争论不休的话题,人们提出了各种理论,包括通过星云气体和岩浆之间的反应形成,或由彗星直接输送。普遍的观点认为,水会随着岩浆的冷却而向岩浆海洋的底部集中。到最后阶段,最靠近地核的岩浆所含的水量可能与地球现今的海洋相当。海底岩浆海洋中的极端压力和温度条件创造了一种独特的化学环境,促进了水和矿物之间发生意想不到的反应。胡青阳博士解释说:"我们的研究表明,这种含水岩浆海洋有利于形成一种富铁相,即过氧化铁镁。这种过氧化物的化学式为(Fe, Mg)O2,与下地幔中的其他主要成分相比,它对铁的偏好更为强烈。根据我们的计算,这种过氧化物对铁的亲和力可能会导致在几公里到几十公里厚的地层中积累以铁为主的过氧化物。"地核-地幔边界异质结构的形成这种富铁过氧化物相的存在将改变 D"层的矿物组成,偏离我们目前的理解。根据新的模型,D"层的矿物将以一种新的组合为主:贫铁硅酸盐、富铁(铁、镁)过氧化物和贫铁(铁、镁)氧化物。这种以铁为主的过氧化物还具有低地震速度和高导电性,使其成为解释 D"层独特地球物理特征的潜在候选物质。这些特征包括超低速度区和高电导率层,两者都是 D"层众所周知的成分异质性的原因。研究结果表明,由岩浆海洋中的古水形成的富铁过氧化物在形成"D"层的异质结构方面发挥了至关重要的作用。这种过氧化物对铁的强烈亲和力在这些富铁斑块和周围地幔之间形成了鲜明的密度对比。从根本上说,它就像一个绝缘体,阻止它们混合,并有可能解释在下地幔底部观察到的长期异质性。这个模型与最近的数值建模结果非常吻合,表明最下层地幔的异质性可能是一个长期存在的特征。编译自/scitechdaily ... PC版: 手机版:

封面图片

将艾滋病毒扼杀在摇篮中新型抗病毒疗法:破解病毒保护罩

将艾滋病毒扼杀在摇篮中新型抗病毒疗法:破解病毒保护罩 新南威尔士大学悉尼分校医学研究人员领导的一个国际研究小组现在掌握了这种新型药物如何将艾滋病病毒外壳推向破裂点,从而阻止病毒传播的细节。他们发现的分子机制发表在《生命》(eLife)杂志上,有助于完善和设计更有效的抗病毒疗法。艾滋病病毒将其遗传物质包裹在蛋白质外壳中,以保护病毒在进入靶细胞后将其基因组RNA转化为DNA的途中。Lenacapavir由生物制药公司吉利德科学(Giliad Sciences)开发,其设计目的正是为了阻断病毒衣壳提供的这种保护。这种强效长效药物是第一种,也是迄今为止唯一一种获得批准的抗艾滋病毒疗法。与戴维-雅克博士一起领导研究小组的蒂尔-伯金教授说:"囊壳在病毒生命周期的多个阶段发挥着核心作用,因此是一个非常好的药物靶点,这一概念是近几年才出现的。"通过将细胞感染研究与单分子成像相结合,研究人员展示了Lenacapavir如何破坏艾滋病病毒的生命周期。有人推测,这种药物会使囊壳变硬,从而锁住病毒,阻止它建立感染。相反,研究小组发现,经过药物强化的囊膜实际上变得非常脆弱。Böcking教授说:"我们发现,这种过度稳定实际上导致了囊壳过早破裂,病毒还来不及将其RNA转化为DNA。"Lenacapavir会导致艾滋病病毒的囊膜破裂,然后才能将其遗传物质运送到宿主细胞核中。图片来源:公共卫生图片库,疾病预防控制中心在靶细胞中,囊壳会在病毒到达细胞核之前破裂,使其遗传物质暴露在宿主细胞细胞质的敌对环境中。为了研究来Lenacapavir对单个囊壳的长期影响,研究小组使用了细胞产生的非感染性艾滋病病毒样颗粒。"利用我们的显微镜装置,我们可以观察病毒外壳的完整性。通过监测载入囊壳的荧光标签的释放情况,我们可以准确地确定囊壳何时破裂,"该研究的主要作者之一沃尔什博士说。研究小组还与英国分子生物学实验室的Leo James博士和其他同事一起研究了新的囊壳的构建过程,再现了新制作的病毒基因组拷贝被捆绑起来以便从感染细胞中释放出来的过程。他们发现,Lenacapavir在艾滋病病毒生命周期的这一阶段也破坏了囊壳的完整性,因为它加速了囊壳的构建,迫使囊壳出现构建错误。产生的畸形噬菌体无法正常闭合,也就无法保护病毒基因组免受攻击。这项研究不仅解决了关于"噬菌体靶向药物是增强还是削弱噬菌体"的争论,而且发现的机制还可用于靶向其他病毒,这些病毒通过构建噬菌体来躲避宿主的防御。"Lenacapavir比其他任何靶向囊膜的化合物都要好得多。"沃尔什博士说:"我们的研究结果提供了一个非常好的蓝图,说明这种药物为何能够如此有效。"编译自:ScitechDaily ... PC版: 手机版:

封面图片

科学家工程改造皮肤细菌 使其生产普通药物对抗痤疮

科学家工程改造皮肤细菌 使其生产普通药物对抗痤疮 痤疮的起因是毛囊被死皮细胞和油脂堵塞,继而发炎,形成我们再熟悉不过的粉刺、丘疹和白头。在打算不挤破它们的时候,我们可以用杀死油脂分泌细胞的药物或针对毛囊中细菌的抗生素来治疗。最近更多的实验性研究包括粉刺疫苗、益生菌或微针贴片,它们都能攻击致病的细菌。但如果我们能让这些细菌为我们工作呢?在这项新研究中,西班牙庞培法布拉大学(UPF)的科学家们研究了如何设计皮肤细菌来生产痤疮药物中的活性成分。他们的目标是痤疮丙酸杆菌,这是皮肤上最常见的细菌种类,也是生活在毛囊深处的细菌。过度分泌一种叫做皮脂的油脂是痤疮的常见诱因,许多痤疮药物如异维A酸都是通过杀死产生皮脂的细胞来发挥作用的。在这种情况下,痤疮丙酸杆菌被设计成能产生一种名为 NGAL 的蛋白质,这种蛋白质能介导自然产生的异维A酸。研究小组在实验室培养的人类皮肤细胞中测试了这种经过编辑的细菌,发现它能够产生和分泌 NGAL,减少皮脂分泌。在对小鼠的测试中,这种细菌也能存活并发挥作用,但由于小鼠的皮肤与我们的皮肤差别很大,因此无法通过这种方式测试其对痤疮的影响。这种技术不仅能帮助清除痤疮,还能减少对抗生素的依赖,因为抗生素正日益导致细菌产生抗药性。研究人员说,虽然还需要做更多的工作,包括首先在三维皮肤模型上进行尝试才能将这种技术用于人体试验,但它也可用于治疗其他皮肤病。首先是特应性皮炎。这项研究的首席研究员马克-居尔(Marc Güell)说:"我们开发了一个技术平台,为编辑任何细菌治疗多种疾病打开了大门。现在的重点是利用痤疮丙酸杆菌治疗痤疮,但我们也可以提供基因电路来创建智能微生物,用于与皮肤传感或免疫调节相关的应用。"这项研究发表在《自然-生物技术》杂志上。 ... PC版: 手机版:

封面图片

科学家发现 COVID-19 如何暗中损害心脏 带来严重健康后果

科学家发现 COVID-19 如何暗中损害心脏 带来严重健康后果 不过,研究人员说,这些发现可能与心脏以外的器官有关,也可能与SARS-CoV-2以外的病毒有关。科学家们早就知道 COVID-19 会增加心脏病发作、中风和长 COVID 的风险,而之前的成像研究也表明,50% 以上的 COVID-19 感染者的心脏会出现一些炎症或损伤。科学家们不知道的是,这种损害是因为病毒感染了心脏组织本身,还是因为人体对病毒的免疫反应引发了全身炎症。美国国立卫生研究院下属的国家心肺血液研究所(NHLBI)基础与早期转化研究项目副主任米歇尔-奥利弗博士说:"这是一个关键问题,找到答案将使我们对这种严重肺损伤与可能导致心血管并发症的炎症之间的联系有一个全新的认识。研究还表明,通过治疗抑制炎症可能有助于最大限度地减少这些并发症。"为了得出结论,研究人员重点研究了被称为心脏巨噬细胞的免疫细胞,这些细胞通常在保持组织健康方面发挥着关键作用,但在心脏病发作或心力衰竭等损伤时会变成炎性细胞。研究人员分析了21名死于SARS-CoV-2相关ARDS的患者的心脏组织标本,并与33名死于非COVID-19原因的患者的标本进行了比较。他们还用 SARS-CoV-2 感染了小鼠,以观察巨噬细胞在感染后发生了什么变化。在人类和小鼠身上,他们发现 SARS-CoV-2 感染增加了心脏巨噬细胞的总数,也使它们改变了正常的作息规律,变得具有炎症性。该研究的资深作者、哈佛医学院放射学教授、医学博士马蒂亚斯-纳伦多夫(Matthias Nahrendorf)说,当巨噬细胞不再从事正常工作(包括维持心脏的新陈代谢和清除有害细菌或其他外来物质)时,它们就会削弱心脏和身体的其他部分。研究人员随后设计了一项小鼠研究,以检验他们观察到的反应是由于 SARS-CoV-2 直接感染了心脏,还是由于肺部的 SARS-CoV-2 感染严重到足以使心脏巨噬细胞更加炎症。这项研究模拟了肺部炎症信号,但没有实际的病毒存在。结果是:即使在没有病毒的情况下,小鼠也能表现出足够强的免疫反应,产生与研究人员在死于 COVID-19 的病人和感染了 SARS-CoV-2 的小鼠身上观察到的相同的心脏巨噬细胞转移。纳伦多夫说:"这项研究表明,COVID感染后,免疫系统会引发全身严重炎症,从而对其他器官造成远程损害这还不包括病毒本身直接对肺组织造成的损害。这些发现也可以更广泛地应用,因为我们的研究结果表明,任何严重的感染都会给全身带来冲击。"研究小组还发现,用中和抗体阻断小鼠的免疫反应可以阻止炎性心脏巨噬细胞的流动,保护心脏功能。虽然他们还没有在人体中进行试验,但这样的治疗方法可以作为一种预防措施,帮助COVID-19患者或那些可能因SARS-CoV-2相关ARDS而导致更严重后果的人。编译自:ScitechDaily ... PC版: 手机版:

封面图片

韩国科学家解决金属氧化物层降解问题 实现21.68%的透明太阳能电池效率

韩国科学家解决金属氧化物层降解问题 实现21.68%的透明太阳能电池效率 韩国能源研究所(Korea Institute of Energy Research)大大推进了半透明过氧化物太阳能电池技术的发展,实现了 21.68% 的世界领先效率,并显示出卓越的耐久性。这一突破旨在提高太阳能电池在窗口和串联配置中的应用,应对到 2050 年实现碳中和的关键挑战。通过创新研究,该团队提高了这些电池的稳定性和效率,为太阳能领域做出了重大贡献。资料来源:韩国能源研究院这种半透明太阳能电池的效率达到破纪录的 21.68%,是世界上使用透明电极的过氧化物太阳能电池中效率最高的。此外,它们还表现出了卓越的耐久性,在运行 240 小时后仍能保持 99% 以上的初始效率。为了到 2050 年实现碳中和,关键在于实现下一代太阳能电池技术的"超高效率"和"应用领域多样化",克服安装空间和国土面积的限制。这就需要高效和多功能的技术,如串联太阳能电池和窗用太阳能电池。这两种技术都需要高效、稳定的半透明过氧化物太阳能电池。为了制造半透明的过氧化物太阳能电池,有必要将传统不透明太阳能电池的金属电极换成允许光线通过的透明电极。在此过程中,会产生高能粒子,导致空穴传输层性能下降。左起为透辉石太阳能电池、半透明透辉石太阳能电池、透辉石-硅串联太阳能电池。资料来源:韩国能源研究院为了避免这种情况,通常会在空穴传输层和透明电极层之间沉积一层金属氧化物作为缓冲。然而,与在相同条件下生产的不透明太阳能电池相比,半透明器件的电荷传输性能和稳定性都有所下降,其确切原因和解决方案尚未明确。研究人员利用电光分析和原子级计算科学,找出了在制造半透明过氧化物太阳能电池过程中电荷传输性能和稳定性降低的原因。他们发现,为提高空穴传输层导电性而加入的锂离子(Li)会扩散到作为缓冲层的金属氧化物层中,最终改变金属氧化物缓冲层的电子结构,使其特性降低。此外,除了找出原因之外,研究人员还通过优化空穴传输层的氧化时间来解决问题。他们发现,通过优化氧化,将锂离子转化为稳定的氧化锂(LixOy),可以减轻锂离子的扩散现象,从而提高器件的稳定性。这一发现揭示了以前被认为是简单反应副产品的氧化锂在提高效率和稳定性方面可以发挥关键作用。安世镇、安承奎、严康勋(左起)和纳克维-赛义德-迪达尔-海德尔(Naqvi Syed Dildar Haider)在圆圈内。图片来源:韩国能源研究院所开发的工艺制成的半透明过氧化物太阳能电池效率高达 21.68%,是所有透明电极过氧化物太阳能电池中效率最高的。此外,这项研究还证明,在黑暗储存条件下 400 小时和在连续照明运行条件下 240 多小时,其初始效率仍能保持在 99% 以上,令人印象深刻,展示了其出色的效率和稳定性。研究团队进一步将开发的太阳能电池用作串联太阳能电池的顶层电池,创造了国内首个双面串联太阳能电池,既可利用从背面反射的光,也可利用从正面入射的光。通过与 Jusung Engineering Co., Ltd. 和德国 Jülich 研究中心合作,双面串联太阳能电池在后方反射光为标准太阳光 20% 的条件下,实现了较高的双面等效效率,四端子为 31.5%,双端子为 26.4%。这项研究的负责人、光伏研究部的 Ahn SeJin 博士表示:"这项研究通过考察有机化合物和金属氧化物缓冲层界面上发生的降解过程,在该领域取得了重大进展,而这种降解过程是半透明过氧化物太阳能电池所独有的,我们的解决方案很容易实现,这表明我们开发的技术在未来的应用中具有巨大潜力"。编译来源:ScitechDaily ... PC版: 手机版:

🔍 发送关键词来寻找群组、频道或视频。

启动SOSO机器人