斯坦福大学工程师用3D打印技术制造出数以万计特殊形状的纳米粒子

斯坦福大学工程师用3D打印技术制造出数以万计特殊形状的纳米粒子 截断四面体形成多个六边形晶粒的光学图像(上图)。键序分析通过不同的颜色显示出不同的六边形晶粒(下图)。颜色相同的相邻四面体表示它们具有相同的晶粒取向。比例尺为 20 微米。资料来源:David Doan 和 John Kulikowski斯坦福大学机械工程助理教授温迪-顾(Wendy Gu)在介绍她发表在《自然-通讯》(Nature Communications)杂志上的最新论文时说:"由纳米球轴承构成的晶体与由纳米骰子构成的晶体的排列方式不同,这些排列方式将产生截然不同的物理性质。我们利用三维纳米打印技术制造出了已知最有前景的形状之一阿基米德截顶四面体。它们是尖端被削掉的微米级四面体"。在这篇论文中,Gu 和她的合著者描述了他们如何纳米打印出数以万计的这种具有挑战性的纳米粒子,将它们搅拌到溶液中,然后观察它们如何自我组装成各种有前景的晶体结构。更重要的是,只需将这些粒子重新排列成新的几何图案,这些材料就能在几分钟内实现不同状态之间的转换。这种改变"相位"的能力材料工程师将其称为"变形"特性类似于将铁变成回钢的原子重新排列,也类似于使计算机能够以数字形式存储 TB 级宝贵数据的材料。她说:"如果我们能学会控制由这些阿基米德截断四面体制成的材料中的这些相移,就能引领许多有前景的工程方向。"长期以来,人们一直认为阿基米德截顶四面体(ATT)是最理想的几何形状之一,可用于生产易于改变相位的材料,但直到最近,这种材料的制造仍具有挑战性在计算机模拟中可以预测,但在现实世界中却很难再现。Gu 很快指出,她的团队并不是第一个大量生产纳米级阿基米德截顶四面体的团队,但他们是第一批(如果不是第一批的话)使用三维纳米打印技术实现这一目标的团队之一。"利用三维纳米打印技术,我们几乎可以制造出任何想要的形状。我们可以非常小心地控制粒子的形状,"Gu 解释说。"通过模拟预测,这种特殊形状可以形成非常有趣的结构。当你能以各种方式将它们组合在一起时,它们就会产生有价值的物理特性。"ATT 至少形成两种非常理想的几何结构。第一种是六边形图案,其中的四面体平放在基底上,截断的顶端朝上,就像一座纳米级山脉。Gu 说,第二种可能更有前景。它是一种准金刚石晶体结构,其中的四面体在朝上和朝下的方向上交替排列,就像鸡蛋放在鸡蛋盒里一样。这种金刚石排列方式被认为是光子学界的"圣杯",可以引领许多新的有趣的科学方向。最重要的是,如果设计得当,未来由三维打印颗粒制成的材料可以快速重新排列,在应用磁场、电流、热量或其他工程方法的情况下,很容易在不同阶段之间来回切换。Gu 说,她可以想象,太阳能电池板的涂层可以全天变化,以最大限度地提高能效;飞机机翼和窗户可以使用新时代的疏水薄膜,这意味着它们永远不会起雾或结冰;还有新型计算机内存。这样的设想不胜枚举。"现在,我们正在努力使这些粒子具有磁性,以控制它们的行为方式,"Gu 谈到她已经在进行的最新研究时说,她正在以新的方式使用阿基米德截顶四面体纳米粒子。"各种可能性才刚刚开始探索。"编译自:ScitechDaily ... PC版: 手机版:

相关推荐

封面图片

科学家发明可穿越血脑屏障的纳米粒子

科学家发明可穿越血脑屏障的纳米粒子 科学家们乐观地认为,他们的方法已在临床前模型中初见成效,最终可用于用一种疗法同时治疗脑转移瘤和原发性乳腺癌肿瘤。迈阿密大学米勒医学院西尔维斯特综合癌症中心的研究人员创造了一种能够穿越血脑屏障的纳米粒子。他们的目标是通过一次治疗消除原发性乳腺癌肿瘤和脑转移瘤。实验室研究表明,这种方法能有效缩小乳腺癌和脑肿瘤的体积。这些继发性肿瘤被称为脑转移瘤,最常见于乳腺癌、肺癌和结肠癌等实体瘤,通常预后较差。当癌症侵入大脑时,治疗就会变得非常困难,部分原因是血脑屏障,这是一层几乎无法穿透的薄膜,将大脑与身体的其他部分隔开。领导这项研究的生物化学与分子生物学副教授、西尔维斯特公司技术与创新部助理主任香塔-达尔(Shanta Dhar)博士说,西尔维斯特团队的纳米粒子有朝一日可能被用于治疗转移瘤,同时还能治疗原发肿瘤。她是5月6日发表在《美国国家科学院院刊》上的一篇论文的资深作者。Shanta Dhar 博士 Credit: Sylvester研究人员在粒子中加入了两种针对线粒体(细胞的能量产生中心)的原药,结果表明,他们的方法可以在临床前研究中缩小乳腺和脑肿瘤。达尔说:"我总是说纳米医学是未来,当然我们已经进入了这个未来。"他指的是市售的COVID-19疫苗,其配方中使用了纳米颗粒。"纳米医学肯定也是癌症疗法的未来"。这种新方法使用了一种由生物可降解聚合物制成的纳米粒子,这种聚合物是由达尔的研究小组之前开发的,同时还使用了她的实验室开发的两种针对癌症能量来源的药物。由于癌细胞的新陈代谢形式往往不同于健康细胞,因此抑制癌细胞的新陈代谢可以有效地杀死肿瘤,而不伤害其他组织。其中一种药物是经典化疗药物顺铂的改良版,它通过破坏快速生长细胞的DNA来杀死癌细胞,从而有效阻止其生长。但肿瘤细胞可以修复自己的DNA,有时会导致顺铂产生抗药性。达尔的研究小组对这种药物进行了改良,将其目标从核DNA(构成染色体和基因组的DNA)转移到线粒体DNA。线粒体是我们细胞的能量来源,包含自己小得多的基因组,而且对于癌症治疗来说,重要的是,线粒体不具备与我们的大基因组相同的DNA修复机制。由于癌细胞可以在不同的能量来源之间切换,以维持其生长和增殖,研究人员将他们的改良顺铂(他们称之为Platin-M,攻击称为氧化磷酸化的能量生成过程)与他们开发的另一种药物Mito-DCA 结合起来,后者专门针对一种称为激酶的线粒体蛋白,抑制糖酵解(一种不同的能量生成方式)。达尔说,开发能够进入大脑的纳米粒子是一条漫长的道路。她的整个独立职业生涯都在研究纳米粒子,在之前一个研究不同形式聚合物的项目中,研究人员注意到,在临床前研究中,一些纳米粒子的一小部分可以进入大脑。通过进一步研究这些聚合物,达尔的团队开发出了一种既能穿过血脑屏障又能穿过线粒体外膜的纳米粒子。达尔说:"要弄清这一点,我们经历了很多波折,我们仍在努力了解这些微粒穿过血脑屏障的机制。"研究小组随后在临床前研究中测试了这种特制的载药纳米粒子,发现它们能缩小乳腺肿瘤和在大脑中播种形成肿瘤的乳腺癌细胞。在实验室研究中,这种纳米粒子-药物组合似乎也是无毒的,并能显著延长存活时间。下一步,研究小组希望在实验室中测试他们的方法,以更接近地复制人类脑转移灶,甚至可能使用源自患者的癌细胞。他们还想在胶质母细胞瘤(一种侵袭性特别强的脑癌)的实验室模型中测试这种药物。在达尔实验室工作的迈阿密大学博士生阿卡什-阿肖坎(Akash Ashokan)说:"我对高分子化学非常感兴趣,将其用于医疗目的真的让我着迷,"阿卡什-阿肖坎是这项研究的共同第一作者,他与博士生舒丽塔-萨卡尔(Shrita Sarkar)共同完成了这项研究。"看到它被应用于癌症治疗,我感到非常高兴。"编译来源:ScitechDaily ... PC版: 手机版:

封面图片

斯坦福大学刚刚推出了基于辅助全息成像技术的未来AR眼镜原型

斯坦福大学刚刚推出了基于辅助全息成像技术的未来AR眼镜原型 访问:Saily - 使用eSIM实现手机全球数据漫游 安全可靠 源自NordVPN 斯坦福大学的全息 AR 眼镜原型。目前,实验室版本的视场角很小,在实验室里只有 11.7 度,远远小于 Magic Leap 2 甚至微软 HoloLens。但是,斯坦福大学的计算成像实验室有一整页的资料,上面有一个又一个的视觉辅助工具,这些辅助工具表明,该实验室可能在研究一些特别的东西:更薄的全息组件堆叠,几乎可以放入标准眼镜框中,经过训练,可以投射出逼真的、全彩的、移动的 3D 图像,这些图像会在不同深度出现。现有 AR 眼镜(a)和原型眼镜(b)与 3D 打印原型眼镜(c)的光学效果对比。图片:斯坦福计算成像实验室与其他 AR 眼镜一样,这些眼镜也使用波导,波导是引导光线穿过眼镜进入佩戴者眼睛的部件。但研究人员说,他们已经开发出一种独特的"纳米光子元表面波导",可以"消除对笨重的准直光学器件的需求",并开发出一种"学习型物理波导模型",利用人工智能算法大幅提高图像质量。该研究称,这些模型"利用相机反馈自动校准"。无论是真实物体还是增强物体,都可以有不同的深度。尽管斯坦福大学的这项技术目前还只是一个原型,其工作模型似乎是固定在长凳上的,框架也是3D打印的,但研究人员希望能颠覆目前的空间计算市场,这个市场还包括苹果的Vision Pro、Meta的Quest 3等笨重的直通式混合现实头盔。博士后研究员 Gun-Yeal Lee 帮助撰写了这篇发表在《自然》杂志上的论文,他说,目前还没有其他 AR 系统能在性能和紧凑性方面与之相比。像 Meta 这样的公司已经斥资数十亿美元购买和构建 AR 眼镜技术,希望最终能生产出大小和形状与普通眼镜无异的完美产品。目前,Meta 的雷朋眼镜没有板载显示屏,但我们去年获得的泄露的 Meta 硬件路线图显示,Meta 第一款真正的 AR 眼镜的目标日期是 2027 年。 ... PC版: 手机版:

封面图片

面对金属纳米粒子喷雾 病原体空气传播感染风险骤降

面对金属纳米粒子喷雾 病原体空气传播感染风险骤降 麻疹流感、SARS、MERS.……只要想到一种重大传染病,它就有可能是通过空气传播的病原体。目前,COVID-19 和肺结核是世界上最致命的传染病,而这两种疾病都是通过空气传播的。因此,要降低疾病在人群中传播的风险,最重要的是开发出能将传染性病菌从空气中驱除的解决方案。因此,西班牙的研究人员与西班牙空气过滤器制造商 Venfilter 合作,研究是否有一种喷涂涂层可以提高市售空气过滤器的抗病能力。研究小组尝试了三种金属化合物:氧化银、氧化铜和氧化锌。他们分别制作了一种含有这些化合物纳米颗粒的喷雾剂,并将其喷洒在过滤器上。他们发现,氧化银和氧化铜喷雾的抗病毒活性都超过了 99%,其中氧化银喷雾还能在研究的 24 小时内完全阻止细菌生长。他们还发现,这种喷雾不会影响过滤器正常清除空气中其他微粒的效果。最令人鼓舞的是,作者发现所使用的Ag2O和 CuO 复合物都具有完全的抗病毒活性(大于 99%),其中Ag2O过滤器提取物还在研究测量的 24 小时培养期内完全阻止了目标细菌的生长。研究人员认为,这种涂层可以有效抵御多种空气传播的病原体,但在这项研究中,他们特别关注了两种病原体:肺炎链球菌和绿脓杆菌。"肺炎双球菌和铜绿假单胞菌被认为是导致全球死亡的五大细菌病原体之一,"该研究的合著者莫妮卡-埃切维里-伦东(Mónica Echeverry-Rendón)说。"肺炎链球菌是社区获得性细菌性肺炎、儿童急性中耳炎和非流行性脑膜炎的主要病原体。而铜绿假单胞菌通常与囊性纤维化和支气管扩张患者的慢性感染反复加重有关"。我们已经看到金属氧化物在生物活性玻璃和热激活程序中的抗病毒效果,这些程序旨在破坏生物膜,还出现了一种光活化箔片用于提高 HEPA 空气过滤器消灭有害细菌的功效。与这些先进技术一样,新型喷涂涂层在投入商业应用之前还需要进一步开发。Echeverry-Rendón 说:"虽然目前取得的成就在科学层面上意义重大,但要在工业层面上实现商业化,还有很长的路要走。未来的工作中需要考虑不同的方面和进一步的测试......以便随着时间的推移,使用带密封框架的实际尺寸过滤器原型,对涂层效果和过滤器性能进行全面鉴定。"目前的研究发表在《材料化学与物理学》杂志上。 ... PC版: 手机版:

封面图片

斯坦福大学研究团队改进了基于铌的量子比特 使其与领先的替代品相媲美

斯坦福大学研究团队改进了基于铌的量子比特 使其与领先的替代品相媲美 在过去的 15 年里,铌作为核心量子比特材料经历了几次平淡无奇的打击之后,就一直坐冷板凳。铌因其作为超导体的卓越品质而备受推崇,一直是量子技术的理想候选材料。然而,科学家们发现铌难以作为核心量子比特元件进行工程设计,因此它被降级为超导量子比特团队的第二根弦。现在,斯坦福大学大卫-舒斯特(David Schuster)领导的研究小组展示了一种制造铌基量子比特的方法,这种量子比特可与同类最先进的量子比特相媲美。芝加哥大学物理科学部的亚历山大-安费洛夫(Alexander Anferov)是这项成果的主要科学家之一。该团队的研究成果发表在《物理应用评论》(Physical Review Applied)上,并得到了美国能源部阿贡国家实验室领导的美国能源部国家量子信息科学研究中心 Q-NEXT 的部分支持。通过利用铌的突出特性,科学家们将能够扩展量子计算机、网络和传感器的功能。这些量子技术利用量子物理学来处理信息,其处理方式超越了传统技术,有望改善医疗、金融和通信等各个领域。约瑟夫森结是超导比特的信息处理核心。图为斯坦福大学的大卫-舒斯特及其团队设计的铌约瑟夫森结。他们的结设计使铌重新成为核心比特材料的可行选择。图片来源:Alexander Anferov/芝加哥大学普利兹克纳米加工设施铌的优势说到超导量子比特,铝一直独占鳌头。铝基超导量子比特可以在数据不可避免地瓦解之前存储相对较长的信息。这些较长的相干时间意味着有更多的时间来处理信息。铝基超导量子比特的最长相干时间为几亿分之一秒。相比之下,近年来,最好的铌基量子比特的相干时间要短 100 倍几千亿分之一秒。尽管量子比特的寿命很短,但铌仍具有吸引力。铌基量子比特能在比铝基量子比特更高的温度下工作,因此需要的冷却更少。与铝基量子比特相比,铌基量子比特的工作频率范围是铝基量子比特的八倍,工作磁场范围是铝基量子比特的 18000 倍,从而扩大了超导量子比特家族的应用范围。在一个方面,两种材料之间没有竞争:铌的工作范围超过了铝。但多年来,由于相干时间较短,铌基量子比特一直未能问世。"没有人真正用铌结制造出那么多的量子比特,因为它们受到相干性的限制,"安费洛夫说。但我们小组希望制造一种能在更高温度和更大频率范围(1 K 和 100 千兆赫)下工作的量子比特。而对于这两种特性来说,铝是不够的。我们需要别的东西。"于是,研究小组再次对铌进行了研究。具体来说,他们研究了铌约瑟夫森结。约瑟夫森结是超导四比特的信息处理核心。在经典信息处理中,数据以比特形式存在,要么是 0,要么是 1。在量子信息处理中,量子比特是 0 和 1 的混合物。超导量子比特的信息作为 0 和 1 的混合物"存活"在结内。超导结在这种混合状态下维持信息的时间越长,超导结和量子位就越好。约瑟夫森结的结构就像三明治,由挤在两层超导金属之间的一层不导电材料组成。导体是一种易于电流通过的材料。超导体则更胜一筹:它能以零电阻传输电流。在混合量子态下,电磁能在结点外层之间流动。典型的、值得信赖的铝约瑟夫森结由两层铝和中间一层氧化铝组成。典型的铌结由两层铌和中间一层氧化铌组成。舒斯特研究小组发现,连接处的氧化铌层消耗了维持量子态所需的能量。他们还发现,铌结的支撑结构是能量损失的主要来源,导致量子比特的量子态消失。研究小组的突破涉及新的结点排列和新的制造技术。新的安排需要一个熟悉的朋友:铝。这种设计摒弃了耗能的氧化铌。它不再使用两种不同的材料,而是使用了三种。这样就形成了一个低损耗的三层结铌、铝、氧化铝、铝、铌。"我们采用了这种两全其美的方法,"安费洛夫说。"铝薄层可以继承附近铌的超导特性。这样,我们既能利用铝的成熟化学特性,又能拥有铌的超导特性"。该研究小组的制造技术包括移除以前方案中支撑铌结的支架。他们找到了一种方法,既能保持结的结构,又能去除在以前的设计中妨碍相干性的会导致损耗的多余材料。安费洛夫说:"事实证明,扔掉垃圾是有帮助的。"一个新的量子位诞生了舒斯特研究小组将他们的新结点纳入超导量子比特后,相干时间达到了 6200 万分之一秒,比性能最好的铌基量子比特长 150 倍。这种量子比特的品质因数量子比特存储能量的指数也达到了 2.57 x105,比以前的铌基量子比特提高了 100 倍,与铝基量子比特的品质因数相比也不遑多让。安费洛夫说:"我们制造的这种结仍然具有铌的优良特性,而且我们改进了结的损耗特性。我们可以直接超越任何铝制量子比特,因为铝在很多方面都是一种劣质材料。我现在有了一种在更高温度下不会死亡的量子比特,这是最大的亮点。"这些成果很可能会提升铌在超导量子比特材料中的地位。舒斯特说:"这是很有希望的首次尝试,因为铌结复活了。铌基量子比特具有广泛的操作范围,我们为未来的量子技术开辟了全新的能力"。编译来源:ScitechDaily ... PC版: 手机版:

封面图片

研究人员首次实现用纯木材料3D打印物品

研究人员首次实现用纯木材料3D打印物品 首先,在 3D 打印介质中使用木材并不是一个新想法。我们以前还看到过用从木材中提取的纤维素打印出的木质物品,以及用锯末与生物环氧树脂混合制成的 3D 打印吉他。麻省理工学院的科学家甚至正在开发一种方法,将实验室培养的木材培育成预定的三维形状。然而,休斯顿莱斯大学的研究人员声称,他们是第一批用完全由木材天然成分组成的材料 3D 打印出真正木制物品的人。除了水之外,粘稠的墨水还包括纤维素纳米纤维、纤维素纳米晶体和木质素后者是一种有机聚合物,构成了包括树木在内的植物的大部分支撑组织。纤维素和木质素都可以从林业、建筑业和消费品行业产生的木材废料中获取。木墨是通过一种称为直接墨水写入(DIW)的 3D 打印工艺来连续分层构建物体的。这与常用的熔融沉积建模(FDM)技术类似,熔融材料从喷嘴中挤出,冷却后硬化。在 DIW 技术中,材料不是冷却,而是通过烧结工艺变成固体形式。对于木质油墨来说,烧结过程包括在 -85 ºC (-121 ºF) 温度下冷冻干燥印刷物体 48 小时,然后在 180 ºC (356 ºF) 温度下加热 20 至 30 分钟。加热步骤将木质素转化为一种"分子胶",将纤维素纤维和晶体结合在一起。部分 3D 打印木制品,包括一张小桌子和一把小椅子据报道,用这种材料打印出来的小物件在外观、结构、质地、热稳定性甚至气味方面都与天然木材十分相似。它们在机械强度上也比天然轻木更强,天然轻木在研究中被用作基线。还有一个额外的好处,就是它们在废弃后可以生物降解。但更重要的是,用油墨打印物品时,只使用打印该物品所需的油墨量。相比之下,用天然木块雕刻或碾磨物品时,去掉的所有木料都会被浪费掉。首席科学家穆罕默德-拉赫曼(Muhammad Rahman)副教授说:"直接利用自身天然成分创建木结构的能力为更加环保和创新的未来奠定了基础。它预示着一个可持续 3D 打印木结构的新时代。"科学家们承认,该过程中的冷冻干燥和加热步骤需要大量能源,因此他们正在探索替代方法。他们的研究论文最近发表在《科学进展》(Science Advances)杂志上。 ... PC版: 手机版:

封面图片

斯坦福大学研制的管状轻质编织天线可取代笨重又昂贵的临时天线

斯坦福大学研制的管状轻质编织天线可取代笨重又昂贵的临时天线 Maria Sakovsky 助教与双稳态可展开四叉螺旋天线一般来说,这种类型的天线由一根或多根导电线组成,这些导电线以螺旋状(像开瓶器一样)缠绕在中央支撑杆上。新的"双稳态可部署四叉螺旋天线"取消了支架,用导电纤维复合材料条代替导线这些导线以螺旋状缠绕在一起,形成一个空心圆柱体。重要的是,该圆柱体可以拉出,形成约一英尺高(305 毫米)的细长结构,也可以向下推,形成约一英寸高、五英寸宽(25 x 127 毫米)的环形结构。天线在长状态下与收发器、地平面和电池等电子设备连接时向所有方向发射低功率信号,以便与地面团队成员进行无线电通信。在短路状态下,它向特定方向发送高功率信号,以便进行卫星通信。这两种状态下使用的频率由每根天线的精确尺寸决定。该设备的双稳态结构有助于简化设置。这意味着,当用手拉动或推动时,它将自动弹出到所需的配置中因此,无论是在灾难现场、战场,甚至可能是在航天器中,都无需猜测它是否已正确部署。"这些领域通常采用的最先进解决方案是沉重的金属天线。它们不便于移动,运行时需要大量电力,而且成本效益不高,"斯坦福大学副教授玛丽亚-萨科夫斯基(Maria Sakovsky)说。"我们的天线重量轻、功耗低,可以在两种工作状态之间切换。在这些缺乏通信的地区,它能够用尽可能少的资源做更多的事情。"有关这项研究的论文最近发表在《自然通讯》杂志上。 ... PC版: 手机版:

🔍 发送关键词来寻找群组、频道或视频。

启动SOSO机器人