新研究揭示了为什么生菜最好冷藏保存

新研究揭示了为什么生菜最好冷藏保存 绿叶蔬菜含有丰富的膳食纤维和营养物质,但它们也可能携带危险的病原体。伊利诺伊大学厄巴纳-香槟分校最近的一项研究调查了影响罗马生菜、绿叶生菜、菠菜、羽衣甘蓝和羽衣甘蓝等五种不同类型绿叶菜中大肠杆菌污染的因素。"我们在生菜上发现了很多致病因素,但羽衣甘蓝和其他黄铜类蔬菜的疫病却不多。我们想更多地了解不同绿叶蔬菜的易感性,"领衔作者、现任杜克大学博士后助理研究员的董梦怡说。董作为博士生在伊利诺伊大学农业、消费与环境科学学院食品科学与人类营养系(FSHN)进行了这项研究。研究人员用大肠杆菌 O157:H7 感染了五种蔬菜中每种蔬菜的整片叶子,并观察了在 4° C(39° F)、20° C(68° F)和 37° C(98.6° F)条件下储存后的情况。结果他们发现易感性是由温度和叶片表面特性(如粗糙度和天然蜡涂层)共同决定的。"在室温或更高的温度下,大肠杆菌在生菜上生长得非常快,但如果将生菜冷藏在 4° C(39° F)的温度下,我们会发现大肠杆菌的数量急剧下降。然而,对于羽衣甘蓝和羽衣甘蓝等蜡质蔬菜,我们却得到了相反的结果。在这些蔬菜上,大肠杆菌在较高温度下生长较慢,但如果它已经存在,在冷藏条件下可以存活更长时间。"即便如此,羽衣甘蓝和羽衣甘蓝总体上比生菜更不容易受到大肠杆菌污染。此外,这些蔬菜通常是煮熟食用的,这样可以杀死或灭活大肠杆菌,而生菜是生吃的。冲洗生菜确实有帮助,但并不能清除所有细菌,因为它们紧紧附着在叶子上。研究人员还将大肠杆菌O157:H7 接种到切开的叶片上,以比较完整叶片的完整表面和切开叶片的受损表面。"完整的树叶和刚切开的树叶会出现不同的情况。切下的叶子会释放出蔬菜汁,其中的营养物质会刺激细菌生长,"董解释道。不过,研究人员发现,菠菜、羽衣甘蓝和羽衣甘蓝汁实际上具有抗菌特性,可以防止大肠杆菌的感染。"为了进一步探索这些发现,他们从羽衣甘蓝和羽衣甘蓝中分离出汁液(裂解液),并将这种液体涂抹在生菜叶上,发现它可用作天然抗菌剂。研究人员说,其潜在应用可能包括抗菌喷雾或涂层,以控制收获前和收获后阶段的食源性病原体污染。"我们无法完全避免食物中的病原体。蔬菜是在土壤中生长的,而不是在无菌环境中,它们会接触到细菌,"合著者、FSHN 副教授、伊利诺伊州推广专家 Pratik Banerjee 说。"要解决这个问题很复杂,但我们可以在食品工业和食品供应链中采用最佳做法。研究界和联邦机构对解决这些问题很感兴趣,美国农业部对食品生产实行高标准,因此总体而言,美国的食品供应相当安全。"Banerjee 和董强调,他们并不想阻止人们食用新鲜水果和蔬菜;它们是健康饮食的一部分。他们总结说,只需遵循食品安全指南,彻底清洗生菜,将其存放在冰箱中,并关注您所在地区的任何食品安全召回指令。编译来源:ScitechDaily ... PC版: 手机版:

相关推荐

封面图片

研究认为细菌耐药性的激增并不完全归咎于抗生素的使用

研究认为细菌耐药性的激增并不完全归咎于抗生素的使用 来自韦尔科姆-桑格研究所、奥斯陆大学、剑桥大学及其合作者的研究人员对细菌进行了一次高分辨率基因比较。他们将 700 多份新的血液样本与近 5000 份先前测序过的细菌样本进行了比较,以回答哪些因素会影响耐抗生素大肠杆菌(E. coli)的传播。最近发表在《柳叶刀微生物》(Lancet Microbe)杂志上的这项研究表明,在某些情况下,抗生素使用量的增加确实会导致耐药细菌的增加。不过,研究人员证实,这取决于所使用的广谱抗生素的类型。他们还发现,抗生素耐药基因的成功取决于携带这些基因的细菌的基因构成。认识抗生素耐药性背后的所有主要因素有助于更深入地了解这些细菌是如何传播的,以及是什么阻碍了它们的传播。这样就能更好地为公共卫生干预措施提供信息,利用完整的环境视角来帮助阻止耐药性感染的传播。大肠杆菌是全球血液感染的常见原因。造成这些感染的大肠杆菌通常存在于肠道中,不会造成危害。但是,如果由于免疫系统衰弱而进入血液,就会造成严重的感染,危及生命。对于医疗服务提供者来说,抗生素耐药性,尤其是多重耐药性(MDR),已成为此类感染的一个常见特征。在英国,超过 40% 的大肠杆菌血流感染对医院用于治疗严重感染的一种主要抗生素产生了耐药性。抗生素的使用和抗药性的变化全球大肠杆菌的抗生素耐药性比率各不相同。例如,对一种常用于治疗由大肠杆菌引起的尿路感染的抗生素的耐药率,因国家而异,从 8.4% 到 92.9% 不等。几十年来,抗生素耐药性一直是一个研究课题,以往研究的监测数据一直表明,抗生素的使用与包括英国在内的全球细菌耐药率增加之间存在关联。以往的研究表明,耐药和非耐药大肠杆菌菌株稳定共存,在某些情况下,非耐药细菌更容易成功。然而,由于缺乏无偏见的大规模纵向数据集,以前无法评估基因驱动因素在其中所起的作用。韦尔科姆-桑格研究所、奥斯陆大学及其合作者的这项新研究首次直接比较了挪威和英国两个国家不同大肠杆菌菌株的成功率,并根据全国范围内的抗生素使用水平解释了差异。特定国家的抗生素耐药性通过分析近20年的数据,他们发现抗生素的使用在某些情况下与抗药性的增加有关,这取决于抗生素的种类。其中一类抗生素,即非青霉素类β-内酰胺类抗生素,在英国的平均人均使用量是挪威的三到五倍。这导致了某种具有多重耐药性的大肠杆菌菌株的感染率升高。不过,英国使用抗生素三甲氧苄氨嘧啶的频率也更高,但在比较两国常见的大肠杆菌菌株时,分析并未发现英国的抗药性水平更高。研究发现,MDR 细菌的存活取决于周围环境中存在哪些大肠杆菌菌株。由于这种情况以及一个地区的其他选择性压力,研究人员得出结论,不能认为广泛使用一种抗生素会对在不同国家传播的耐抗生素细菌产生同样的影响。持续研究的重要性科学家们强调,他们的研究结果需要持续的研究努力,以确定大肠杆菌和其他临床重要细菌在各种生态环境中传播的其他驱动因素。要想充分了解抗生素、旅行、食品生产系统和其他因素对一个国家耐药性水平的综合影响,还需要进一步的研究。了解更多能够战胜抗生素耐药性大肠杆菌的菌株,有助于找到阻止其传播的新方法。例如,尝试增加某一地区非抗药性、无害细菌的数量。第一作者之一、挪威奥斯陆大学安娜-波蒂宁(Anna Pöntinen)博士是威康-桑格研究所(Wellcome Sanger Institute)的访问科学家:"我们的大规模研究使我们能够开始回答一些长期存在的问题,即是什么原因导致人群中出现耐多药细菌。这项研究之所以能够完成,是因为英国和挪威对细菌病原体进行了全国性的系统监测。如果没有这样的系统,科学家们利用基因组学的力量所能了解到的东西就会受到很大的限制"。剑桥大学的合著者朱利安-帕克希尔(Julian Parkhill)教授说:"我们的研究表明,抗生素是抗生素耐药大肠杆菌成功的调节因素,而不是唯一原因。我们的研究追踪了几种不同广谱抗生素的影响,结果表明这些抗生素的影响因国家和地区而异。总之,我们的综合基因分析表明,在不了解该环境中细菌菌株的基因构成的情况下,并不总是能够预测抗生素的使用会对一个地区产生怎样的影响。"该研究的资深作者、威康桑格研究所(Wellcome Sanger Institute)和挪威奥斯陆大学的尤卡-科兰德(Jukka Corander)教授说:"耐药性大肠杆菌是一个重大的全球公共卫生问题。长期以来,人们一直认为过度使用抗生素是导致超级细菌增多和传播的原因之一,而我们的研究则强调,广泛存在的大肠杆菌菌株的耐药性水平可能有很大差异。抗生素的使用将是一种选择性压力,而我们的研究表明,这并不是影响这些细菌成功的唯一因素。如果我们要控制超级细菌的传播,继续利用基因组学来详细了解细菌成功的内在驱动因素至关重要"。编译来源:ScitechDaily ... PC版: 手机版:

封面图片

隐形杀手:大肠杆菌的隐性变异如何令其到达致命程度

隐形杀手:大肠杆菌的隐性变异如何令其到达致命程度 昆士兰大学分子生物科学研究所的 Mark Schembri 教授和 Nhu Nguyen 博士以及 Mater Research 的 Sumaira Hasnain 副教授在大肠杆菌的纤维素制造机制中发现了这一突变。Schembri 教授说,这种突变为受影响的大肠杆菌开了绿灯,使其能够进一步扩散到体内,感染更多器官,如肝脏、脾脏和大脑。"'好'细菌能制造纤维素 而'坏'细菌不能"Schembri 教授说:"我们的发现解释了为什么一些大肠杆菌会导致危及生命的败血症、新生儿脑膜炎和尿路感染 (UTI),而另一些大肠杆菌却能在我们体内存活而不造成危害。"细菌的细胞表面会产生许多物质,这些物质可以刺激或抑制宿主的免疫系统。新发现的突变阻止了大肠杆菌制造细胞表面碳水化合物纤维素,这导致宿主肠道炎症加剧。结果是肠道屏障被破坏 细菌就能在体内传播。植物、藻类和"好"细菌能制造碳水化合物纤维素,而"坏"细菌不能。研究小组在复制人类疾病的模型中发现,无法产生纤维素的细菌毒性更强,因此会导致更严重的疾病,包括脑膜炎中的脑部感染和尿毒症中的膀胱感染。大肠杆菌是与细菌抗生素耐药性相关的最主要病原体。寻找预防感染的新方法Hasnain副教授说,了解细菌如何从肠道储藏库传播到身体其他部位,对于预防感染非常重要。她说:"我们的发现有助于解释为什么某些类型的大肠杆菌 变得更加危险,并为不同类型的高毒性和入侵性细菌的出现提供了解释。"大肠杆菌是与细菌抗生素耐药性相关的最主要病原体。仅在 2019 年,全球就有近 500 万人的死亡与细菌的抗生素耐药性有关,其中大肠杆菌导致了 80 多万人死亡。随着对所有现有抗生素都有抗药性的超级细菌的威胁在全球范围内不断增加,找到预防这种感染途径的新方法对于减少人类感染数量至关重要。编译来源:ScitechDaily ... PC版: 手机版:

封面图片

研究人员发现了M蛋白如何成为SARS-CoV-2病毒球形结构的关键

研究人员发现了M蛋白如何成为SARS-CoV-2病毒球形结构的关键 M蛋白的创新研究由加州大学河滨分校的物理学家领导的一个研究小组设计了一种制造大量 M 蛋白的新方法,并描述了该蛋白与细胞膜(包膜或“皮肤”)的物理相互作用。 病毒。 该团队的理论建模和模拟显示了这些相互作用如何可能导致病毒自我组装。研究人员在今天发表在《科学进展》上的论文中报告说,当与 SARS-CoV-2 上的刺突蛋白相邻的 M 蛋白卡在膜中时,它会通过局部减少膜厚度来诱导膜弯曲。 这种曲率的诱导导致了 SARS-CoV-2 的球形。从左到右:Roya Zandi、Thomas Kuhlman 和 Umar Mohideen。 图片来源:加州大学河滨分校库尔曼实验室“如果我们能够更好地了解病毒如何自我组装,那么原则上我们就可以想出方法来阻止这一过程并控制病毒的传播,”物理学和天文学助理教授托马斯·E·库尔曼(Thomas E. Kuhlman)说。 领导了该研究项目。 “M 蛋白之前一直抵制任何类型的表征,因为它很难制造。”Kuhlman和他的同事通过使用大肠杆菌作为“工厂”来大量制造M蛋白,从而克服了这一困难。 他解释说,虽然大肠杆菌可以产生大量的 M 蛋白,但这些蛋白质往往会在大肠杆菌细胞中聚集在一起,最终杀死它们。 为了规避这一挑战,研究人员诱导大肠杆菌细胞产生小泛素相关修饰蛋白(SUMO)以及 M 蛋白。突破性技术“在我们的实验中,当大肠杆菌产生 M 蛋白时,它同时产生 SUMO,”Kuhlman说。 “M 蛋白与 SUMO 蛋白融合,从而防止 M 蛋白彼此粘连。 SUMO 蛋白相对容易通过另一种蛋白简单地切断来去除。 M 蛋白由此被纯化并从 SUMO 中分离出来。”这项工作为驱动 SARS-CoV-2 病毒组装的机制提供了基本见解。“由于 M 蛋白也是其他冠状病毒的组成部分,我们的研究结果提供了有用的见解,可以增强我们的理解,并有可能不仅在 SARS-CoV-2 中,而且在其他致病性冠状病毒中干预病毒形成。”未来发展方向接下来,研究人员计划研究 M 蛋白与其他 SARS-CoV-2 蛋白的相互作用,以潜在地破坏这些与药物的相互作用。Kuhlman与加州大学河滨分校的物理学家 Roya Zandi 和 Umar Mohideen 一起参与了这项研究。 Kuhlman负责制造 M 蛋白。 Mohideen 是一位杰出的物理学和天文学教授,他使用原子力显微镜和低温电子显微镜来测量 M 蛋白如何与膜相互作用。 Zandi 是病毒组装专家、物理学和天文学教授,他开发了 M 蛋白如何相互作用以及与膜相互作用的模拟。该论文的其他合著者包括加州大学河滨分校的 Yuanzhong Zhu、Siyu Li、Michael Worcester、Sara Anbir、Pratyasha Mishra; 以及加州大学默塞德分校的 Joseph McTiernan、Michael E. Colvin 和 Ajay Gopinathan。 共同第一作者张和安比尔对这项工作做出了同等贡献。该研究得到了加州大学总统办公室的资助,旨在调查 COVID-19 病毒如何自我组装。该研究论文的标题是“脂质双层内 SARS-CoV-2 膜蛋白的合成、插入和表征”。编译自:ScitechDaily ... PC版: 手机版:

封面图片

新研究揭示了为什么我们的肌肉会随着年龄增长而衰弱

新研究揭示了为什么我们的肌肉会随着年龄增长而衰弱 该图谱发表在《自然-衰老》(Nature Aging)杂志上,它发现了新的细胞群,可以解释为什么一些肌肉纤维比其他肌肉纤维衰老得更快。它还确定了肌肉对抗衰老的补偿机制。这些发现为未来的疗法和干预措施提供了途径,以改善肌肉健康和老年人的生活质量。这项研究是国际"人类细胞图谱"计划的一部分,该计划旨在绘制人体每种细胞类型的图谱,从而改变人们对健康和疾病的认识。随着年龄的增长,我们的肌肉会逐渐变弱。这会影响我们进行站立和行走等日常活动的能力。对某些人来说,肌肉流失会加剧,导致跌倒、行动不便、丧失自主能力,并引发一种叫做"肌肉疏松症"的病症。人们对肌肉随时间衰弱的原因仍然知之甚少。在这项新研究中,威康桑格研究所和中国中山大学的科学家们利用单细胞和单核测序技术以及先进的成像技术,分析了来自 17 个年龄在 20 岁至 75 岁之间的人的肌肉样本。研究小组发现,在来自老年样本的肌肉干细胞中,控制核糖体(负责生产蛋白质)的基因活性较低。随着年龄的增长,这损害了细胞修复和再生肌肉纤维的能力。此外,这些骨骼肌样本中的非肌肉细胞群产生了更多的促炎分子CCL2,将免疫细胞吸引到肌肉中,加剧了与年龄相关的肌肉退化。此外,还观察到与年龄有关的一种特定快肌肌纤维亚型的损失,这种肌纤维亚型是肌肉爆发力的关键。不过,他们首次发现了肌肉的几种补偿机制,似乎可以弥补这种损失。这些机制包括慢速肌纤维转而表达失去的快速肌纤维亚型的特征基因,以及剩余快速肌纤维亚型的再生增加。研究小组还在肌肉纤维中发现了特殊的细胞核群,它们有助于重建随着年龄增长而衰退的神经和肌肉之间的连接。研究小组在实验室培育的人类肌肉细胞中进行的基因敲除实验证实了这些细胞核在维持肌肉功能方面的重要性。这项研究的第一作者、威康桑格研究所的 Veronika Kedlian 说:"我们采用无偏见、多方面的方法来研究肌肉衰老,结合不同类型的测序、成像和调查,揭示了以前未知的衰老细胞机制,并突出了有待进一步研究的领域"。该研究的资深作者、中国广州中山大学的张洪波教授说:"在中国、英国和其他国家,我们都有老龄化人口,但我们对老龄化过程本身的了解却很有限。我们现在可以详细了解肌肉如何在衰老的影响下尽可能长时间地保持功能。"这项研究的资深作者、威康桑格研究所(Wellcome Sanger Institute)的莎拉-泰克曼(Sarah Teichmann)博士是人类细胞图谱的创始人之一:"通过人类细胞图谱,我们正在以前所未有的方式详细了解人体,从人类发育的最初阶段一直到老年。有了这些对骨骼肌健康老化的新认识,世界各地的研究人员现在可以探索如何对抗炎症、促进肌肉再生、保护神经连接等。这样的研究发现对于制定治疗策略,促进后代更健康地步入老年有着巨大的潜力。"编译来源:ScitechDaily ... PC版: 手机版:

封面图片

太空沙拉中的致病菌难题:新研究引发宇航员健康担忧

太空沙拉中的致病菌难题:新研究引发宇航员健康担忧 但这中间存在一个问题。国际空间站有很多致病细菌和真菌。国际空间站中的许多致病微生物都具有很强的攻击性,很容易在莴苣和其他植物的组织中定植。一旦人们吃了被大肠杆菌或沙门氏菌侵染的莴苣,就会生病。美国国家航空航天局(NASA)和太空探索技术公司(SpaceX)等私营公司每年为太空探索投入数十亿美元,一些研究人员担心,国际空间站上爆发食源性疾病可能会导致任务脱轨。特拉华大学的研究人员在《科学报告》和《npj 微重力》杂志上发表了一项新研究,他们在模仿国际空间站失重环境的条件下种植莴苣。植物是感知重力的高手,它们利用根来寻找重力。特拉华大学种植的植物通过旋转暴露在模拟的微重力环境中。研究人员发现,这些处于人造微重力环境下的植物实际上更容易受到人类病原体沙门氏菌的感染。UD 植物与土壤科学系校友诺亚-托茨林(Noah Totsline)说,气孔是植物叶片和茎上用来呼吸的微小孔隙,当植物感觉到附近有细菌等压力源时,通常会关闭气孔以保护植物。当研究人员在微重力模拟下向莴苣中添加细菌时,他们发现绿叶菜的气孔不是关闭而是张开了。Totsline 说:"当我们向他们展示似乎是一种压力时,他们仍然保持开放,这确实出乎我们的意料。"两篇论文的第一作者托特斯莱因与植物生物学教授哈什-拜斯(Harsh Bais)、微生物食品安全教授卡利-克尼尔(Kali Kniel)和特拉华生物技术研究所的钱德兰-萨巴纳亚甘(Chandran Sabanayagam)合作。研究小组使用了一种叫做回转器的设备,以旋转器上烤鸡的速度旋转植物。"实际上,植物不知道哪个方向是向上或向下,"Totsline 说。"我们有点混淆了它们对重力的反应"。托特斯莱因说,这并不是真正的微重力,但它能帮助植物失去方向感。最终,研究人员发现,在模拟微重力条件下,沙门氏菌似乎比在地球上的典型条件下更容易侵入叶片组织。此外,Bais 和其他 UD 研究人员还发现了一种名为 B. subtilis UD1022 的辅助细菌在促进植物生长和提高植物抗病原体或其他压力(如干旱)能力方面的作用。他们将 UD1022 添加到在地球上可以保护植物免受沙门氏菌侵袭的微重力模拟中,认为它可以帮助植物在微重力环境中抵御沙门氏菌的侵袭。相反,他们发现这种细菌实际上无法在类似太空的条件下保护植物,这可能是由于这种细菌无法引发迫使植物关闭气孔的生化反应。Bais说:"UD1022在模拟微重力条件下无法关闭气孔,这既令人惊讶,又很有趣,同时还打开了另一扇窗。我猜想,UD1022在模拟微重力下否定气孔关闭的能力可能会使植物不堪重负,使植物和UD1022无法相互交流,从而帮助沙门氏菌入侵植物。"国际空间站上的食源性病原体微生物无处不在。这些细菌存在于我们身上、动物身上、我们吃的食物上以及环境中。因此,UD 微生物食品安全教授卡利-克尼尔(Kali Kniel)自然而然地说,只要有人类的地方,就有细菌病原体共存的可能。据美国国家航空航天局(NASA)称,每次大约有 7 人在国际空间站生活和工作。这里的环境并不是最严密的大约有一栋六居室的房子那么大但仍然是那种细菌可以肆虐的地方。克尼尔说:"我们需要为现在生活在国际空间站上的人和将来可能生活在那里的人做好准备,降低太空风险。必须更好地了解细菌病原体对微重力的反应,以便制定适当的缓解策略"。这两位研究人员长期以来一直将微生物食品安全和植物生物学这两个学科领域结合起来,研究植物上的人类病原体。克尼尔说:"为了以最佳方式降低与绿叶蔬菜和其他农产品污染有关的风险,我们需要更好地了解人类病原体与在太空中生长的植物之间的相互作用。要做到这一点,最好的办法就是采用多学科方法。"地球人口不断增长,太空安全食品需求更大人类要想在月球或火星上生活可能还需要一段时间,但 UD 的研究对外太空居住有很大的潜在影响。根据联合国的一份报告,到 2050 年,地球上的人口将达到 97 亿,到 2100 年将达到 104 亿。此外,加州大学植物生物学教授拜斯说,全世界的食品安全和粮食安全措施已经达到了顶峰。他说:"随着种植粮食的农田逐渐减少,人们很快就会认真考虑替代居住空间的问题。"这些不再是虚构的了"。美国疾病控制和预防中心或美国食品和药物管理局似乎更经常地对地球上的某些莴苣发布召回公告,告诉人们不要食用这种莴苣,因为它有可能感染大肠杆菌或沙门氏菌。拜斯说,绿叶菜是许多宇航员的首选食物,而且很容易在室内环境(如国际空间站的水培环境)中种植,因此确保这些绿叶菜始终可以安全食用非常重要,谁都不希望仅仅因为食品安全事件而导致整个任务失败。解决方案:绝育种子和改良基因那么,如果植物在微重力环境下气孔开得更大,让细菌轻易进入,该怎么办呢?事实证明,答案并没有那么简单。克尼尔说:"从经过消毒的种子开始是降低植物上微生物风险的一种方法。但这样一来,微生物可能会进入太空环境,并以这种方式进入植物体内。"拜斯说,科学家可能需要调整植物的基因,防止它们在太空中把气孔张得更大。他的实验室已经开始采用具有不同基因的不同莴苣品种,并在模拟微重力条件下对它们进行评估。"举例来说,如果我们发现一种植物的气孔会关闭,而我们已经测试过的另一种植物的气孔会打开,那么我们就可以尝试比较这两种不同栽培品种的基因。这将给我们带来很多问题,让我们知道是什么在改变"。他们找到的任何答案都有助于防止太空沙拉今后出现问题。编译自/scitechdaily ... PC版: 手机版:

封面图片

澳门旅游学院学者根据持份者角度对土生菜概念作研究

澳门旅游学院学者根据持份者角度对土生菜概念作研究 #澳门旅游学院 两名澳门旅游学院教职员将深入探讨土生菜,尝试为错综复杂的土生菜系设下定义和规范。 由澳门旅游学院副教授颜力祺(Henrique Fátima Ngan)博士和讲师Anna Litwin女士带领名为“世遗踪影是否呈现在美食之都的菜单之上:土生菜的定义和规范”的研究经过严紧的遴选程序,于十月脱颖而出获得澳门特别行政区政府文化局的学术研究资助...

🔍 发送关键词来寻找群组、频道或视频。

启动SOSO机器人