新研究表明细胞拥有某种未知的基于离子梯度的通信系统

新研究表明细胞拥有某种未知的基于离子梯度的通信系统 细胞不断在动态环境中航行,面临着不断变化的条件和挑战。但细胞如何迅速适应这些环境波动呢?新研究揭示,跨细胞膜的离子梯度创建了一个独立于DNA 的网络,可帮助细胞迅速做出决策。发表在《iScience》上的莫菲特癌症中心的一项新研究挑战了我们对细胞功能的理解,从而回答了这个问题。一个研究小组提出,细胞拥有一种以前未知的信息处理系统,它能让细胞独立于基因迅速做出决定。几十年来,科学家一直将 DNA 视为细胞信息的唯一来源。DNA 蓝图指示细胞如何构建蛋白质和执行基本功能。然而,由迪佩什-尼劳拉(Dipesh Niraula)博士和罗伯特-加滕比(Robert Gatenby)医学博士领导的莫菲特新研究发现了一种与DNA同时运行的非基因组信息系统,它能使细胞从环境中收集信息并对变化做出快速反应。离子梯度的作用研究的重点是细胞膜上离子梯度的作用。这些梯度由专门的泵维持,需要消耗大量能量才能产生不同的跨膜电势。研究人员提出,这些梯度代表了一个巨大的信息库,使细胞能够持续监测其环境。当细胞膜上的某个点接收到信息时,它会与离子特异性通道中专门的门相互作用,然后打开这些门,让这些离子沿着预先存在的梯度流动,形成一条通信通道。离子流触发了细胞膜附近的一连串事件,使细胞能够对信息进行分析并迅速做出反应。当离子流较大或持续时间较长时,它们会导致细胞骨架的微管和微丝的自组装。通常,细胞骨架网络为细胞提供机械支持,并负责细胞的形状和运动。然而,莫菲特公司的研究人员注意到,细胞骨架中的蛋白质也是极好的离子导体。这使得细胞骨架成为一个高度动态的细胞内布线网络,将基于离子的信息从膜传递到细胞内的细胞器,包括线粒体、内质网和细胞核。研究人员认为,这一系统可以对特定信号做出快速的局部反应,也可以对较大的环境变化做出协调的区域或全球反应。研究的启示和影响机器学习系应用研究科学家尼劳拉说:"我们的研究揭示了细胞利用跨膜离子梯度作为通信手段的能力,使它们能够迅速感知周围环境的变化并做出反应。这种错综复杂的网络使细胞能够迅速做出明智的决定,这对细胞的生存和功能至关重要。"研究人员认为,这种非基因组信息系统对于形成和维持正常的多细胞组织至关重要,并认为神经元中描述详尽的离子通量就是这种广泛信息网络的一个特殊例子。这些动态变化的中断也可能是癌症发展的一个关键组成部分。他们证明了自己的模型与多项实验观察结果一致,并强调了由其模型产生的几项可检验的预测,希望能为未来的实验验证其理论和揭示细胞决策的复杂性铺平道路。"这项研究挑战了生物学中隐含的假设,即基因组是信息的唯一来源,而细胞核则是一种中央处理器。"莫菲特进化治疗卓越中心联合主任加滕比说:"我们展示了一个全新的信息网络,它允许快速适应和进行细胞生存所需的复杂交流,并很可能深度参与了细胞间的信号传递,从而使多细胞生物体得以正常运作。"编译来源:ScitechDaily ... PC版: 手机版:

相关推荐

封面图片

由DNA和肽组成的自组装合成细胞超越了自然能力

由DNA和肽组成的自组装合成细胞超越了自然能力  新的合成细胞利用 DNA 和肽构建细胞骨架(用淡紫色标出)图/北卡罗来纳大学教堂山分校细胞的结构和稳定性来自细胞骨架,这是一个由蛋白质组成的交联框架,用于包裹和保护其他成分。根据细胞类型的不同,这种细胞骨架可以有不同程度的灵活性,并以不同的方式对环境做出反应,从而赋予细胞特异功能。在这项新研究中,北卡罗来纳大学教堂山分校的科学家们开发出了由 DNA、肽和其他遗传物质组成的合成自组装细胞骨架。该研究的第一作者罗尼特-弗里曼说:"DNA通常不会出现在细胞骨架中。我们对DNA序列进行了重新编程,使其成为一种建筑材料,将多肽结合在一起。一旦将这种编程材料放入水滴中,结构就会成形。"研究人员能够对 DNA 进行编程,使其以不同的方式组装,从而赋予合成细胞不同的功能。它们也没有被锁定在一个目的上改变溶液的温度可以触发不同的配置。研究小组说,将不同的肽或DNA序列组合在一起,就能制造出更大规模的可编程组织。虽然它们没有活细胞那么复杂,但这些合成细胞更容易操作,而且能在天然细胞无法处理的条件下工作。弗里曼说:"合成细胞即使在122 °F(50 °C)的温度下也能保持稳定,这为在通常不适合人类生存的环境中制造具有超常能力的细胞提供了可能。"研究小组表示,当这些可编程细胞与其他合成细胞技术相结合时,可用于再生医学、药物输送系统和诊断工具等应用。这项研究发表在《自然-化学》杂志上。 ... PC版: 手机版:

封面图片

研究发现癌细胞如何相互拉扯决定了癌症是否扩散

研究发现癌细胞如何相互拉扯决定了癌症是否扩散 在今天发表于 AIP 出版社《APL 生物工程》(APL Bioengineering)上的一篇论文中,来自德国和西班牙的研究小组利用乳腺癌细胞系面板以及乳腺癌和宫颈癌患者的原发肿瘤外植体,研究了两种不同的细胞收缩力模式:一种是产生集体组织表面张力,使细胞簇保持紧凑;另一种是更具方向性的收缩力,使细胞能够将自身拉入 ECM。"我们重点研究了两个参数,即细胞拉扯 ECM 纤维并产生牵引力的能力,以及细胞相互拉扯从而产生高组织表面张力的能力,"作者 Eliane Blauth 说。"我们将每种特性与不同的收缩机制联系起来,并询问它们如何与癌细胞逃逸和肿瘤侵袭性联系起来"。胶原蛋白网络上的两个恶性混合穆勒氏瘤外植体。两块瘤体都粘附在胶原蛋白网络上,并开始拉扯胶原蛋白纤维,这促使胶原蛋白发生广泛的位移和排列,同时也导致了以应力纤维收缩能力为主的细胞逃逸。这两块胶原尖锐而光滑的边界结构进一步表明,组织表面张力很强,阻碍了皮质收缩力占优势的细胞逃逸。资料来源:Steffen Grosser、Frank Sauer 和 Eliane Blauth研究小组发现,更具侵袭性的细胞对 ECM 的拉力比对自身的拉力更大,而非侵袭性细胞对自身的拉力比对 ECM 的拉力更大不同的拉力行为归因于细胞内不同的肌动蛋白细胞骨架结构。侵袭性细胞主要使用肌动蛋白应力纤维横跨细胞的粗大肌动蛋白束对周围环境产生拉力,而非侵袭性细胞则通过其肌动蛋白皮层细胞膜正下方的薄网络产生拉力。研究表明,决定细胞逃逸潜力的不是这些收缩模式的总体大小,而是它们之间的相互作用。仅用中度侵袭性细胞进行的实验表明,这些细胞对 ECM 纤维产生的总作用力与非侵袭性细胞相当,但它们仍能脱离并侵袭 ECM,这是非侵袭性细胞无法做到的。"非侵袭性细胞仍具有较高的皮质收缩力,使它们保持在一起,而中度侵袭性细胞的皮质收缩力几乎消失,"布劳特说。"因此,尽管它们对 ECM 纤维的拉力要弱得多,但对它们的牵制作用并不大。"研究小组对来自患者的重要肿瘤外植体进行的测量证实了他们在细胞系实验中的发现。在这里,具有高皮质收缩性的细胞数量在肿瘤发展过程中有所减少。"这进一步表明,随着肿瘤的生长,细胞相互拉扯并将自身聚集在一起的能力会变弱,从而可能增加转移风险"。编译来源:ScitechDaily ... PC版: 手机版:

封面图片

藻类细胞被招募来充当治疗肠道疾病的机器人

藻类细胞被招募来充当治疗肠道疾病的机器人 每个微型机器人都由一个海藻细胞(绿色)和抗炎纳米粒子(红色)组成。首先,什么是炎症性肠病?实际上,它是两种消化道自身免疫性疾病的统称,即克罗恩病和溃疡性结肠炎。虽然这两种疾病的确切病因还不完全清楚,但人们认为它们是由于人体免疫系统对入侵的病毒或细菌做出了不当反应而引起的。这种有缺陷的反应会导致被称为巨噬细胞的免疫细胞产生过量的致炎蛋白质,这种蛋白质被称为促炎细胞因子这种情况发生在结肠(又称大肠)内。然后,这些细胞因子转而与巨噬细胞上的受体结合,引发它们产生更多的细胞因子。由此造成的恶性循环会使结肠无限期地发炎,导致腹泻、直肠出血、腹痛、疲劳和体重减轻等症状不断出现。海藻机器人旨在打破这种恶性循环。这些微型机器人由加州大学圣迭戈分校的科学家们创造,每个机器人都是一个活的绿藻细胞,表面覆盖着由生物可降解聚合物制成的纳米颗粒。每个纳米颗粒上又覆盖着巨噬细胞膜。该图说明了微型机器人是如何被运送到结肠的患者(会)先吞下一粒胶囊,里面装满了悬浮在载液中的微型机器人。由于其配方,胶囊的外壳在胃中保持完整,直到达到结肠的中性 pH 值才会溶解。一旦溶解,微型机器人就会释放出来。海藻细胞/机器人游过结肠,彻底分散到整个器官中。结肠中的细胞因子会与机器人上的纳米颗粒结合。这是因为细胞因子将这些颗粒误认为是巨噬细胞,因为它们包裹着巨噬细胞膜。不过,由于纳米粒子不是巨噬细胞,因此不会触发它们产生更多的细胞因子。因此,结肠中的细胞因子数量会逐渐被纳米颗粒"耗尽",从而减轻炎症,使受损组织得以愈合。在对患有肠易激综合症的小鼠进行测试时,发现微型机器人可以减少直肠出血、改善粪便稠度、扭转体重下降趋势并减轻结肠炎症。更重要的是,啮齿动物没有表现出任何副作用。目前正在计划对人类进行临床试验。与约瑟夫-王(Joseph Wang)教授共同领导这项研究的张良芳教授说:"这种方法的优点是不需要药物。我们只是利用天然细胞膜来吸收和中和促炎细胞因子"。Zhang 和 Wang 以前曾利用藻类细胞微型机器人治疗肺炎。有关他们目前研究的论文最近发表在《科学机器人学》杂志上。 ... PC版: 手机版:

封面图片

解码癌症:研究人员揭示细胞是如何"叛变"的

解码癌症:研究人员揭示细胞是如何"叛变"的 访问:NordVPN 立减 75% + 外加 3 个月时长 另有NordPass密码管理器 约翰斯-霍普金斯大学医学院的科学家们绘制了人类乳腺和肺细胞中的一条分子途径,它可能导致基因组过度复制,而这正是癌细胞的一个特征。这些发现最近发表在《科学》杂志上,揭示了当一组分子和酶触发并调节所谓的"细胞周期"(用细胞的遗传物质制造新细胞的重复过程)时,会出现什么问题。研究人员认为,这些发现可用于开发中断细胞周期障碍的疗法,并有可能阻止癌症的生长。为了复制,细胞会遵循一个有序的程序,首先复制整个基因组,然后分离基因组副本,最后将复制的DNA平均分成两个"子"细胞。人类细胞的每对染色体有 23 对一半来自母亲,一半来自父亲,包括性染色体 X 和 Y即总共 46 对,但已知癌细胞会经历一个中间状态,即拥有双倍的数量92 条染色体。这是如何发生的是一个谜。约翰霍普金斯大学医学院分子生物学和遗传学副教授塞尔吉-雷戈特(Sergi Regot)博士说:"癌症领域科学家们的一个永恒问题是:癌细胞基因组是如何变得如此糟糕的?我们的研究对细胞周期的基础知识提出了挑战,让我们重新评估了关于细胞周期如何调节的想法"。细胞周期调控面临的挑战雷戈特说,复制基因组后受到压力的细胞会进入休眠或衰老阶段,并错误地冒着再次复制基因组的风险。一般来说,这些休眠细胞在被免疫系统"识别"为有问题的细胞后,最终会被清除。但有时,尤其是随着年龄的增长,免疫系统无法清除这些细胞。如果任由这些异常细胞在体内游荡,它们就会再次复制基因组,在下一次分裂时对染色体进行洗牌,从而引发癌症。为了确定细胞周期中出现问题的分子途径的细节,雷戈特和研究生研究助理康纳-麦肯尼(Connor McKenney)领导约翰-霍普金斯大学的研究小组,重点研究了乳腺导管和肺组织中的人类细胞。原因何在?这些细胞的分裂速度通常比体内其他细胞更快,从而增加了观察细胞周期的机会。观看这段视频,了解细胞在不分裂的情况下经历两次复制基因组的细胞周期阶段。细胞核中出现的亮点表明 DNA 正在复制的位置。资料来源:约翰-霍普金斯大学医学院塞尔吉-雷戈特实验室雷戈特的实验室擅长对单个细胞进行成像,因此特别适合发现极少数没有进入休眠期、继续复制基因组的细胞。在这项新研究中,研究小组仔细观察了数千张单细胞在细胞分裂过程中的图像。研究人员开发了发光生物传感器,用于标记细胞周期蛋白依赖性激酶(CDKs)。他们发现,各种 CDK 在细胞周期的不同时期激活。在细胞受到环境压力(如干扰蛋白质生产的药物、紫外线辐射或所谓的渗透压(细胞周围水压的突然变化))后,研究人员发现 CDK 4 和 CDK 6 的活性降低了。细胞周期破坏的研究结果五到六小时后,当细胞开始准备分裂时,CDK 2 也受到了抑制。此时,一种名为无丝分裂促进复合物(APC)的蛋白质复合物在细胞分裂前的阶段被激活,这一步骤被称为有丝分裂。Regot说:"在研究中的受压环境中,APC激活发生在有丝分裂之前,而通常人们只知道它在有丝分裂过程中激活。"当暴露在任何环境压力下时,约 90% 的乳腺细胞和肺细胞会离开细胞周期,进入安静状态。在他们的实验细胞中,并非所有细胞都安静了下来。研究小组发现,约有 5%-10%的乳腺细胞和肺细胞重返细胞周期,再次分裂染色体。通过另一系列实验,研究小组发现,所谓的应激活化蛋白激酶活性的增加与一小部分细胞脱离安静阶段并继续将基因组翻倍有关。雷戈特说,目前正在进行一些临床试验,测试DNA损伤剂与阻断CDK的药物。联合用药有可能促使一些癌细胞将基因组复制两次,产生异质性,最终产生抗药性。也许有药物可以阻止 APC 在有丝分裂前激活,从而防止癌细胞二次复制基因组,防止肿瘤阶段性进展。编译来源:ScitechDaily ... PC版: 手机版:

封面图片

新研究介绍了一种通过尿液检测衰老细胞的新方法

新研究介绍了一种通过尿液检测衰老细胞的新方法 瓦伦西亚理工大学(Universitat Politècnica de València)、瓦伦西亚大学(Universitat de València)、CIBER 生物工程、生物材料和纳米医学部(CIBER-BBN)、神经退行性疾病部(CIBER-NED)以及普林西比-费利佩研究中心(CIPF)的研究人员通力合作,开发出了一种用于检测尿液中衰老细胞的创新探针。这一突破可以加深我们对衰老过程的了解,有助于监测和开发新的策略来应对与衰老相关的退化性疾病。该研究成果发表在《自然通讯》(Nature Communications)上。研究人员解释说,衰老的标志之一是大多数器官中衰老细胞的出现频率增加,从而导致组织功能障碍。这些细胞的存在还与许多与衰老相关的疾病有关。"细胞衰老的主要目的是防止可能导致癌症的受损细胞增殖。然而,当损伤持续存在或在衰老过程中,衰老细胞会异常积累,影响组织功能并加速衰老。这就是为什么必须创建新的系统来轻松有效地检测这些细胞,"UPV 分子识别研究和技术开发大学间研究所(IDM)副所长兼 CIBER-BBN 科学主任 Ramón Martínez Máñez 说。研究人员。图片来源:UPV将探针注射到小鼠体内后,探针会与衰老细胞中特别丰富的一种酶发生作用,产生一种荧光化合物,并迅速随尿液排出体外。"根据尿液中信号的强度,我们可以知道机体内衰老细胞的负担,"紫外线研究中心副主任 Isabel Fariñas 和 CIPF 的研究员 Mar Orzáez 指出。在研究中,他们还监测了使用消除衰老细胞并能使组织恢复活力的药物进行衰老治疗的情况。他们观察到,尿液中信号的强度与动物衰老程度的降低以及与年龄有关的焦虑的减少有关。"给药后,会释放出一种荧光团,最终由肾脏排出体外,可以通过尿液进行测量。荧光团的强度表明细胞衰老负荷的水平,我们已经看到,这与衰老过程中与年龄相关的焦虑和衰老治疗有关,"紫外线公司的伊莎贝尔-法里纳斯(Isabel Fariñas)和 CIBERNED 的副主任解释说。来自瓦伦西亚理工大学、瓦伦西亚大学、CIBER-BBN、CIBERNED 和 Príncipe Felipe 研究中心的研究小组取得的成果为更好地了解衰老及其对健康的影响开辟了一条途径。"拉蒙-马丁内斯-马涅斯总结说:"它可以帮助我们开发出更有效的方法来解决与衰老有关的问题,并开发出简便的泌尿治疗方法来消除或减少细胞衰老,甚至是人类的衰老。 ... PC版: 手机版:

封面图片

研究发现免疫细胞可以被用于治疗几乎所有的疾病

研究发现免疫细胞可以被用于治疗几乎所有的疾病 传统上,人们认为Tregs是只存在于人体特定部位的专业细胞群。然而,英国剑桥大学科学家的一项新研究推翻了这一传统观点,对治疗引发免疫反应的各种疾病和损伤具有重要意义。大学病理学系的阿德里安-利斯顿(Adrian Liston)教授是这项研究的通讯作者,他说:"很难想象有哪种疾病、伤害或注射不涉及某种免疫反应,我们的发现确实改变了我们控制这种反应的方式。我们发现了免疫系统的新规则。这支'统一的治疗大军'无所不能修复受伤的肌肉、让脂肪细胞对胰岛素做出更好的反应、让毛囊重新生长。想到我们可以用它来治疗如此广泛的疾病,这真是太棒了:它有可能被用于治疗几乎所有的疾病。"淋巴器官是免疫系统不可或缺的组成部分,负责制造淋巴细胞,这是一种包括 T 细胞在内的白细胞。T 细胞在骨髓中开始生命,然后转移到胸腺(位于胸部中上部的器官),在那里成熟为特化亚群,包括 Tregs。一旦完全成熟,T 细胞就会输出到外周淋巴组织和器官,如脾脏、扁桃体和淋巴结(有些会进入血液)。人们认为,Tregs 会留在那里"待命",直到免疫系统发出召唤。为了验证这一点,研究人员分析了小鼠48种不同组织中存在的Tregs,包括淋巴组织、非淋巴组织以及与肠道相关的组织。他们在所有组织类型中都发现了Tregs,这表明Tregs并不是局限于淋巴组织的特化细胞群,而是在身体各处移动,在需要的部位执行修复功能。利斯顿说:"既然我们知道这些调节性T细胞存在于人体的各个部位,原则上我们就可以开始针对单个器官进行免疫抑制和组织再生治疗这与目前的治疗方法相比是一个巨大的进步,因为目前的治疗方法就像用大锤敲打人体一样。"目前的抗炎药物治疗的是全身而不仅仅是发炎的组织,它们抑制了人体的整个免疫系统,使人容易受到感染。研究人员测试了他们之前开发的一种药物,这种药物能在小鼠体内将Tregs吸引到特定器官或组织,增加它们的数量,并激活它们来抑制免疫反应,促进愈合。研究人员说,根据他们的研究结果,有可能通过单独关闭该区域的免疫反应来修复特定部位的损伤。"通过提高人体目标区域调节性T细胞的数量,我们可以帮助人体更好地进行自我修复或管理免疫反应,"利斯顿说。"在许多疾病中,我们都希望关闭免疫反应并启动修复反应,例如多发性硬化症等自身免疫性疾病,甚至许多传染性疾病。"研究人员正在筹集资金,准备成立一家独立公司。未来几年,他们的目标是通过开展人体临床试验来检验他们的研究成果。这项研究发表在《免疫》杂志上。 ... PC版: 手机版:

🔍 发送关键词来寻找群组、频道或视频。

启动SOSO机器人