操纵代谢:寄生古微生物由内而外改造宿主

操纵代谢:寄生古微生物由内而外改造宿主 由丁苏、约书亚-哈姆、妮可-贝尔、雅普-达姆斯特和安雅-斯潘组成的研究小组在最近的《自然-通讯》上发表了这些研究成果。古细菌是一类独特的单细胞生物,与细菌一样,细胞内没有带有DNA 的细胞核或其他细胞器。这项研究的重点是 DPANN 古细菌,其特点是细胞微小,遗传物质有限。这些古菌依赖其他微生物生存,附着在它们身上并提取脂质来构建自己的细胞膜。电子显微镜下显示寄生的 Ca.Nha.antarcticus:小圆形,附着在宿主 Hrr.图片来源:Joshua N Hamm以前人们认为这些寄生古细菌会不加区分地消耗宿主的任何脂质来制造自己的膜,与此相反,Ding 和 Hamm 的最新研究结果表明,这些寄生古细菌的行为更具选择性。具体地说,寄生古细菌南极纳米古细菌(Candidatus Nanohaloarchaeum antarcticus)只选择性地吸收宿主Halorubrum lacusprofundi 的某些脂质。哈姆总结道:"换句话说:换句话说:Ca.N. antarcticus很挑食。"古菌、细菌和高等生物古细菌是一种单细胞生物,长期以来一直被认为是细菌的一个特殊类群。与细菌相似,它们的细胞内没有含有 DNA 的细胞核或其他细胞器。然而,从 20 世纪 70 年代起,微生物学家不再认为古细菌是细菌,而是将它们归类为所有生命形式中的一个独立领域。因此,现在我们有古细菌、细菌和真核生物,后者包括所有动物和植物,它们的细胞中都有带有遗传物质的细胞核。通过分析有寄生虫和没有寄生虫的宿主的脂质,丁和哈姆能够证明宿主通过改变它们的膜来适应寄生虫的存在。这包括改变所使用的脂质的类型和数量,以及改变脂质的行为,从而提高新陈代谢和膜的弹性,使寄生虫更难穿透。他解释说:"如果宿主的膜发生变化,就会影响宿主对环境变化(如温度或酸度)的反应。另一个寄生于寄主 Hrr.Nha. antarcticus 寄生在宿主 Hrr.图片来源:Joshua N Hamm这项研究的另一个突破性进展是由苏鼎在国家创新研究院(NIOZ)开发了一种新的分析技术。在此之前,脂质分析需要事先了解目标脂质基团。新技术可以同时检测所有脂质,包括未知类型的脂质,从而有助于发现脂质成分的变化。如果使用传统方法可能无法看到脂质的变化,但新方法使其变得简单明了。这些发现为微生物的相互作用和生态学提供了深刻的见解。哈姆说:"它不仅首次揭示了不同古细菌之间的相互作用,还对微生物生态学的基本原理提出了全新的见解。他强调了未来研究的重要性,以确定在不断变化的环境条件下,这些相互作用会如何影响微生物群落的稳定性。"编译来源:ScitechDaily ... PC版: 手机版:

相关推荐

封面图片

研究人员发现珊瑚中抵御气候变化的微生物卫士

研究人员发现珊瑚中抵御气候变化的微生物卫士 他们发现,珊瑚微生物组(生活在珊瑚中的多种微生物)中某些原生生物的丰度可以让科学家了解珊瑚是否能在热应力下存活下来。这些发现对全球珊瑚具有重要意义,因为它们面临着更频繁的海洋变暖事件,尤其是那些没有动物贝壳的珊瑚。资料来源:迈阿密大学罗森斯蒂尔海洋、大气和地球科学学院该研究的资深作者哈维尔-德尔坎波(Javier del Campo),罗森斯蒂尔学院(Rosenstiel School)的兼职助理教授,也是西班牙国家研究委员会(CSIC)和庞培法布拉大学(UPF)联合中心IBE的首席研究员介绍说:"由于气候变化,珊瑚面临越来越多的热应激事件,更好地了解可能影响生存能力的所有微生物,可以为保护工作者提供信息,让他们知道应该优先对哪些珊瑚进行干预。"为了开展这项研究,国际研究小组从地中海各地收集了珊瑚样本,分析它们的微生物组,并进行了热应力实验。他们对两种 rRNA 进行了扩增和测序,以观察一种软珊瑚紫罗兰色海鞭(Paramuricea clavata),一种微生物群中的细菌和原生生物,然后在实验室中对它们进行自然热应力实验,以检测死亡迹象。紫罗兰色海鞭(Paramuricea clavata)是地中海温带珊瑚礁的重要组成部分,目前正受到与全球变暖有关的大规模死亡事件的威胁。图片来源:Parent GéryParamuricea clavata是地中海温带珊瑚礁的重要建筑师,目前正受到与全球变暖有关的大规模死亡事件的威胁。他们发现,一类名为"Syndiniales"的寄生性单细胞原生动物在热应力下存活的珊瑚中更为常见,而一类与导致人类疟疾的寄生虫密切相关的原生动物"Corallicolids"在热应力下死亡的珊瑚中更为常见。据研究人员称,原生生物或单细胞真核生物在大多数宿主生物中的研究少于细菌,但它们可能对珊瑚宿主的健康产生重大影响。德尔坎波说:"微生物组是珊瑚宿主健康的重要组成部分,我们应该研究其中从细菌到原生动物的所有成员。"这项研究最近发表在《环境微生物学》杂志上。编译来源:ScitechDaily ... PC版: 手机版:

封面图片

Cell子刊:你身体上的微生物群就像指纹一样独一无二

Cell子刊:你身体上的微生物群就像指纹一样独一无二 这是科学家对86人的肠道、口腔、鼻子和皮肤微生物群进行详细研究后得出的结论。在六年的时间里,在每个人的微生物群中存活得最好的细菌是那些对个人最特殊的细菌,而不是整个人群共有的细菌。“我们的研究结果强调了这样一种观点,即我们每个人的体内都有个性化的微生物组,这对我们来说是特殊的,你的基因、饮食和免疫系统都在塑造这个生态系统。”斯坦福大学医学院遗传学教授Michael Snyder博士说。这项新研究由Michael Snyder与George Weinstock(2023年去世)合作领导完成,这是美国国立卫生研究院综合人类微生物组项目的一部分,并在线发表在《细胞宿主与微生物》杂志上。该研究还发现了微生物组与健康之间的几种相关性:例如,2型糖尿病患者的微生物组不太稳定,多样性也较差。“我们认为,随着胰岛素抵抗,血液中脂质、蛋白质和其他代谢物的改变会改变微生物群可利用的营养物质,并影响这些细菌的生长,”遗传学博士后学者、该论文的第一作者Xin Zhou博士说。长期跟踪科学家们最近对人类微生物群在健康和疾病中的作用有了新的认识。但是,微生物群的庞大规模一个普通人体内大约有39万亿个微生物,以及它不断变化的事实,使得研究变得困难。研究人员一直在努力确定是否存在一种理想的微生物组组成,以及改变某人的微生物是否可以减轻疾病。这组研究人员追踪人们的微生物组长达六年,希望更好地了解个体体内的微生物是如何随着短期感染或慢性疾病的发作而变化的。他们每季度从86名年龄在29岁到75岁之间的人的粪便、皮肤、口腔和鼻子中收集微生物组样本。当参与者患有呼吸道疾病、接种了疫苗或服用了抗生素时,在五周的时间里,研究人员额外采集了三到七个样本。每个微生物组样本都进行了基因测序,以揭示其所含的细菌。与此同时,研究人员收集了大量关于参与者健康的其他临床数据,以研究各种因素如何与微生物组的变化相关。研究人员总共分析了5432个生物样本,产生了118,124,374个测量值。Snyder说:“在这么长的一段时间里,研究来自不同身体部位的微生物,让我们第一次把整个微生物群看作一个单一的流体系统。”注重稳定性这项新研究证实了之前的研究发现,揭示了在健康人的微生物组中经常发现的少数细菌,以及在感染和其他疾病期间人体微生物组的显著变化。然而,比单个细菌类型更能说明问题的是微生物组的稳定性。在健康时期,一个人的微生物组很少发生剧烈变化。在感染或糖尿病的发展过程中,构成微生物组的细菌波动更大。“我们发现,当你生病时,比如感冒,你的微生物群会发生这种暂时的变化;它变得非常失调,对于糖尿病来说,这种特征在很多方面都是一样的,除了它是长期的而不是暂时的。”Zhou说。当研究人员专注于哪些微生物在多年的过程中最有可能发生变化时,他们惊讶地发现,对个体来说最特殊的细菌是最稳定的。Snyder说:“很多人会怀疑我们之间共有的细菌是最重要的,因此也是最稳定的。我们发现了完全相反的情况个人微生物群是最稳定的。这进一步表明,我们的个人微生物群与其他人的个人微生物群不同,对我们的健康至关重要。这是有道理的,因为它们都有不同的健康基线。”数据带来了另一个惊喜:身体不同部位的微生物组是高度相关的。即使存在不同类型的细菌,当一个身体部位的微生物群发生变化时,其他部位也会发生变化。例如,如果在呼吸道感染开始时鼻腔细菌发生变化,肠道、口腔和皮肤微生物也会迅速开始发生变化。当肠道细菌随着糖尿病发生变化时,皮肤、口腔和鼻子上的细菌也会发生变化。与健康的联系根据整个研究过程中采集的血液样本,研究小组怀疑免疫系统是连接身体不同部位微生物的共同纽带,也是连接微生物群整体健康的纽带。血液中某些免疫蛋白的水平随着微生物群的变化而同步变化。此外,血脂血液中的脂肪也与微生物群稳定性的变化有关,这解释了与糖尿病的一些联系。该小组指出了几个影响微生物群形成的环境因素:例如,微生物随着季节的变化而发生可预测的变化,可能是由于湿度和阳光水平的变化以及新鲜食物的供应。但是这些环境因素,包括饮食,仍然不能解释人与人之间的差异。研究人员说,新的数据否定了存在一个黄金标准的微生物群的想法,即每个人都应该努力达到最佳健康状态。“相反,我们正在朝着这样一个想法前进,即我们拥有一个个人微生物组,它对我们自己的代谢和免疫健康非常重要。我们的新陈代谢和免疫健康也会极大地影响我们的微生物群它们都是联系在一起的。人与人之间的微生物组差异很大,你如何喂养它,它接触到什么,可能会对你的健康产生重大影响,我们还需要从很多方面解决这个问题。”Snyder说。 ... PC版: 手机版:

封面图片

世卫组织总干事:抗微生物药物耐药性危机正在发生

世卫组织总干事:抗微生物药物耐药性危机正在发生 世界卫生组织总干事谭德塞在沙特阿拉伯吉达举行的第四届全球高级别抗微生物药物耐药性部长级会议上,阐述了一个令人警醒的现实:抗微生物药物耐药性正在威胁我们所依赖的药物效能。 联合国新闻中心引述谭德塞星期五(11月15日)的讲话说,当前讨论的不仅仅是超级细菌感染导致人们死亡的风险,而是每年有130万人正因此丧命。 他说,今年9月联合国大会通过的《抗微生物药物耐药性政治宣言》设定了明确的目标,当前的任务是将其转化为具体行动,特别是以下三个优先事项:1)增加来自国内和国际的可持续融资;2)增加研究、开发和创新,以解决“抗微生物药物耐药性研发枯竭”的问题;3)增加公平获取优质抗微生物药物的机会,同时确保合理使用。 谭德塞说:“抗微生物药物耐药性的讽刺之处在于,它是由不当使用抗微生物药物引发的,而与此同时,许多人因无法获得这些药物而死亡。” 谭德塞强调,抗微生物药物耐药性“就发生在眼前,但解决方案也同样在我们手中”。他呼吁各利益相关者抓住吉达会议带来的机会,加速行动,致力于更强有力的合作,保护那些保护我们的药物。 抗微生物药物耐药性发生在细菌、病毒、真菌和寄生虫对抗微生物药物不再产生反应时。由于药物耐药性使抗生素和其他抗微生物治疗方法失效,治疗感染变得更加困难,甚至可能变得不可能。这或将导致超级细菌的出现,这些细菌不受用于治疗这些病原体的首选药物抑制,从而增加了疾病传播、残疾和死亡的风险。 一位委内瑞拉的科学家正在研究抗微生物药物耐药性,该问题被认为是全球十大公共卫生威胁之一,病毒随着时间的推移发生变化,且不再对药物产生反应。 世卫组织东地中海区域主任巴尔赫指出,抗微生物药物耐药性不仅仅是与健康相关的可持续发展目标三所涵盖的问题。实际上,抗微生物药物耐药性议程涉及全球17个可持续发展目标中的至少11个,涵盖了从食品生产到公平等多个领域。 #世界卫生组织 #微生物 #谭德塞 #抗生素-电报频道- #娟姐新闻:@juanjienews

封面图片

哈佛和麻省理工学院科学家发现肠道中能破坏胆固醇的微生物

哈佛和麻省理工学院科学家发现肠道中能破坏胆固醇的微生物 研究发现,在胆固醇水平降低的人群中,有多种细菌能代谢胆固醇。肠道微生物群的变化与一系列疾病有关,如 2 型糖尿病、肥胖症和炎症性肠病。现在,麻省理工学院和哈佛大学布罗德研究所以及麻省总医院的一个研究小组发现,肠道中的微生物也可能影响心血管疾病。在发表于《细胞》(Cell)杂志的一项研究中,研究小组确定了在肠道中消耗胆固醇的特定细菌种类,它们可能有助于降低人体内的胆固醇和心脏病风险。拉姆尼克-泽维尔实验室、布罗德代谢组学平台的成员和合作者分析了弗拉明汉心脏研究(Framingham Heart Study)1400 多名参与者的代谢物和微生物基因组。研究小组发现,一种名为"颤螺旋菌"(oscillibacter)的细菌会吸收并代谢周围环境中的胆固醇,肠道中这种微生物含量较高的人胆固醇水平较低。他们还确定了这种细菌可能用来分解胆固醇的机制。这些结果表明,以特定方式操纵微生物组的干预措施有朝一日可能有助于降低人体内的胆固醇。这些发现还为更有针对性地研究微生物组的变化如何影响健康和疾病奠定了基础。泽维尔是布罗德研究所的核心成员、免疫学项目主任和传染病与微生物组项目联合主任。他还是哈佛医学院和麻省总医院的教授。泽维尔实验室的博士后研究员李晨皓和研究科学家马丁-斯特拉扎尔是这项研究的共同第一作者。在过去的十年中,其他研究人员发现了肠道微生物组的组成与心血管疾病因素之间的联系,如人的甘油三酯和餐后血糖水平。但科学家们还无法针对这些联系采取治疗措施,部分原因是他们对肠道内的代谢途径缺乏全面的了解。在这项新研究中,布罗德团队更全面、更详细地了解了肠道微生物对新陈代谢的影响。他们将枪式元基因组测序技术与代谢组学技术相结合,枪式元基因组测序技术能分析样本中所有微生物的DNA,代谢组学技术能测量数百种已知和数千种未知代谢物的水平。他们利用这些工具研究了弗雷明汉心脏研究的粪便样本。斯特拉扎尔说:"项目成果强调了高质量、经过整理的患者数据的重要性。这使我们能够注意到那些非常微妙且难以测量的效果,并直接对其进行跟踪。"这种方法发现了微生物与代谢特征之间的 16000 多种关联,其中有一种关联特别强烈:与缺乏相关属种细菌的人相比,体内有几种颤螺旋菌属细菌的人胆固醇水平较低。研究人员发现,该属细菌在肠道中的数量惊人,平均每 100 个细菌中就有 1 个。研究人员随后想弄清微生物分解胆固醇的生化途径。为此,他们首先需要在实验室中培养这种生物。幸运的是,实验室多年来一直在收集粪便样本中的细菌,为此他们建立了一个独特的菌种库,其中也包括颤螺旋菌。在成功培育出这种细菌后,研究小组利用质谱法确定了细菌中胆固醇代谢最可能产生的副产品。这使他们能够确定细菌降低胆固醇水平的途径。他们发现,细菌将胆固醇转化为中间产物,然后再由其他细菌分解并排出体外。接下来,研究小组利用机器学习模型确定了负责这种生化转换的候选酶,然后在实验室中的某些颤螺旋菌中检测到了这些酶和胆固醇分解产物。研究小组发现了另一种肠道细菌 - 产粪甾醇真杆菌(Eubacterium coprostanoligenes),它也有助于降低胆固醇水平。这种细菌携带一种基因,科学家们此前已经 先前已经证明参与胆固醇代谢。在新的研究中,研究小组发现,Eubacterium 可能与Oscillibacter对胆固醇水平有协同作用,这表明,研究细菌物种组合的新实验可能有助于揭示不同微生物群落如何相互作用影响人类健康。人类肠道微生物组中的绝大多数基因仍未定性,但研究小组相信,他们在确定胆固醇代谢酶方面取得的成功,为发现受肠道微生物影响的其他类似代谢途径铺平了道路,这些代谢途径可以作为治疗靶点。"有许多临床研究试图进行粪便微生物组转移研究,但对微生物之间以及微生物与肠道之间如何相互作用却不甚了解,"李说。"我们希望先退一步,专注于一种特定的微生物或基因,我们就能系统地了解肠道生态学,并提出更好的治疗策略,比如针对一种或几种微生物进行治疗。""由于肠道微生物组中存在大量功能未知的基因,我们预测代谢功能的能力还存在差距,"他补充说。"我们的工作强调了肠道微生物可能改变其他固醇代谢途径的可能性。我们可能会有很多新发现,这些发现将使我们更接近于从机理上理解微生物是如何与宿主相互作用的。"编译自:ScitechDaily ... PC版: 手机版:

封面图片

研究发现受感染的微生物会携带产生甲烷的新基因

研究发现受感染的微生物会携带产生甲烷的新基因 研究发现,微生物一旦受到感染,就会携带产生甲烷的新基因。最近的一项研究揭示,感染微生物的病毒在甲烷(一种强效温室气体)的环境循环中发挥着关键作用,从而加剧了气候变化。通过分析从各种湖泊到牛胃内部等15种不同栖息地采集的近1000组元基因组DNA数据,研究人员发现,微生物病毒携带有控制甲烷过程的特殊遗传元素,即辅助代谢基因(AMGs)。根据生物栖息地的不同,这些基因的数量也会不同,这表明病毒对环境的潜在影响也因其栖息地而异。这项研究的第一作者、俄亥俄州立大学伯德极地与气候研究中心副研究员钟志平说,这一发现为更好地理解甲烷如何在不同生态系统中相互作用和移动提供了重要依据。"了解微生物如何推动甲烷过程非常重要,"钟说,他也是一名微生物学家,研究微生物如何在不同环境中进化。"微生物对甲烷代谢过程的贡献已经研究了几十年,但对病毒领域的研究在很大程度上仍然不足,我们希望了解更多"。这项研究发表在《自然通讯》杂志上。病毒在温室气体排放中的作用病毒帮助促进了地球上所有的生态、生物地球化学和进化过程,但科学家们直到最近才开始探索它们与气候变化的关系。例如,甲烷是仅次于二氧化碳的第二大温室气体排放源,但主要是由被称为古细菌的单细胞生物产生的。这项研究的共同作者、俄亥俄州立大学微生物组科学中心微生物学教授马修-沙利文(Matthew Sullivan)说:"病毒是地球上最丰富的生物实体。在这里,我们在一长串病毒编码的代谢基因中增加了甲烷循环基因,从而扩大了我们对其影响的了解。我们的团队试图回答病毒在感染过程中实际操纵了多少'微生物代谢'"。尽管微生物在加速大气变暖方面发挥的重要作用现已得到广泛认可,但人们对感染这些微生物的病毒所编码的甲烷代谢相关基因如何影响它们的甲烷产生却知之甚少,钟南山说。为了解开这个谜团,钟志平和他的同事们花了近十年的时间从独特的微生物库中收集和分析微生物和病毒 DNA 样本。研究小组选择的最重要的研究地点之一是克罗地亚自然保护区内的弗拉纳湖。在富含甲烷的湖泊沉积物中,研究人员发现了大量影响甲烷产生和氧化的微生物基因。此外,他们还发现了多种病毒群落,并发现了 13 种有助于调节宿主新陈代谢的 AMG。尽管如此,没有任何证据表明这些病毒本身直接编码甲烷代谢基因,这表明病毒对甲烷循环的潜在影响因其栖息地而异,钟说。牲畜和环境影响总之,研究显示,甲烷代谢AMG更有可能在宿主相关环境(如牛胃内部)中发现,而在环境栖息地(如湖泊沉积物)中发现的这些基因则较少。由于奶牛和其他牲畜也造成了全球约 40% 的甲烷排放,他们的研究表明,病毒、生物和整个环境之间的复杂关系可能比科学家们曾经想象的更加错综复杂。钟说:"这些发现表明,病毒对全球的影响被低估了,值得引起更多关注。"虽然目前还不清楚人类活动是否影响了这些病毒的进化,但研究小组希望从这项工作中获得的新见解能让人们进一步认识到传染源对地球上所有生命的影响力。尽管如此,要继续深入了解这些病毒的内在机制,还需要进一步的实验来进一步了解它们对地球甲烷循环的贡献,钟南山说,尤其是当科学家们在研究如何减少微生物驱动的甲烷排放时。他说:"这项工作是掌握气候变化的病毒影响的第一步。我们还有很多东西要学。"编译自:ScitechDaily ... PC版: 手机版:

封面图片

开创性的方法揭示了地球表面深处微生物群落的关键信息

开创性的方法揭示了地球表面深处微生物群落的关键信息 由比奇洛海洋科学实验室研究人员领导的科学家团队开发出一种创新方法,将生活在地球表面深处无氧环境中的单个微生物的遗传学和功能联系起来。测量这两个属性更重要的是将它们联系起来长期以来一直是微生物学的一项挑战,但对于了解微生物群落在碳循环等全球过程中的作用至关重要。比奇洛实验室单细胞基因组学中心开发的新方法使研究人员发现,在死亡谷地下近半英里处的地下含水层中,一种消耗硫酸盐的细菌不仅数量最多,而且是最活跃的生物。研究结果发表在《美国国家科学院院刊》上,表明这种方法可以成为测量不同生物在这些极端环境中活跃程度的有力工具。洞察微生物群落动力学"以前,我们不得不假定所有细胞都以相同的速率运行,但现在我们可以看到,微生物群落个体成员之间的活动水平存在很大差异,"研究科学家兼论文第一作者梅洛迪-林赛说。"这有助于我们了解这些微生物群落的能力,以及它们可能对全球生物地球化学循环产生的影响"。沙漠研究所团队从死亡谷的钻孔中提取样本。图片来源:杜安-莫泽,沙漠研究所最近的研究是一个更大项目的一部分,该项目将微生物的遗传密码它们能做什么的蓝图与它们在任何特定时刻实际在做什么联系起来。方法论方面的进展由美国国家科学基金会 EPSCoR 计划资助的"基因组到表型组"项目是毕格罗实验室、沙漠研究所和新罕布什尔大学之间的一项合作项目。该项目利用单细胞基因测序的最新进展,创造性地采用流式细胞仪估算细胞内呼吸等过程的速率。流式细胞仪是一种分析单个环境微生物的方法,比奇洛实验室将其从生物医学科学中改造出来,使研究人员能够快速分拣出含水层水样中的活微生物。这些微生物被一种特殊设计的化合物染色,当细胞内发生某些化学反应时,这种化合物就会在流式细胞仪的激光下发光。比奇洛实验室的实习学生通过实验得出了细胞在激光下发出荧光的程度与这些反应速度之间的关系,然后将其应用到死亡谷的样本中。测量并分离出活性细胞后,研究小组对它们各自的基因组进行了测序。研究人员还使用了元转录组学(一种确定哪些基因正在活跃表达的方法)和放射性同位素示踪剂(一种测量微生物群落活动的更传统的方法)。这样做既是为了"双重检查"他们的结果,也是为了获得更多关于这些微生物的基因能力与它们实际活动之间联系的信息。单细胞基因组学中心是世界上唯一一家为研究人员提供这种新技术的分析机构。"这项研究对我们的研究团队和南加州地质调查局来说是一个令人兴奋的机会,可以帮助我们更好地了解地下巨大而神秘的微生物生态系统,"比奇洛实验室高级研究科学家、南加州地质调查局局长兼该项目的首席研究员拉穆纳斯-斯泰潘纳斯卡斯(Ramunas Stepanauskas)说。这项新研究首次展示了这种量化单个细胞活性的方法。2022 年底,研究小组发表了关于海水中微生物的研究结果,显示一小部分微生物消耗了海洋中的大部分氧气。在这篇新论文中,研究小组扩展了这一方法,表明它可用于低生物量环境中不依赖氧气的微生物。例如,在从加利福尼亚州地下含水层提取的样本中,科学家们估计每毫升水中有数百个细胞,而一般地表水每毫升中有数百万个细胞。"我们一开始研究海洋中的有氧呼吸生物,因为它们更活跃,更容易分类,也更容易在实验室中生长,"林赛说。"但有氧呼吸只是微生物学中可能存在的一个过程,所以我们想在此基础上进一步拓展"。扩大微生物研究范围研究结果证实,Candidatus Desulforudis audaxviator 细菌(绰号"勇敢的旅行者")不仅是这一环境中数量最多的微生物,也是最活跃的微生物,它能将硫酸盐还原为能量。与之前研究中的海水样本相比,研究小组测得的总体活性率较低,但单个微生物的活性差异很大。研究小组目前正努力将他们的方法应用于测量其他厌氧反应,如硝酸盐还原,并应用于新的环境,包括缅因州沿海的沉积物。由美国国家航空航天局(NASA)资助的一个相关项目也使林赛和她的同事们能够在海洋深处的地下测试这种方法。"现在,我们正在世界各地进行这些点测量,它们确实有助于我们更好地了解微生物的活动情况,但我们需要扩大其规模。因此,我们正在考虑如何将这种方法应用到新的地方,甚至有可能应用到其他星球上,并扩大应用范围。"编译自:ScitechDaily ... PC版: 手机版:

🔍 发送关键词来寻找群组、频道或视频。

启动SOSO机器人