"花式线头"可在人体需要的地方释放药物

"花式线头"可在人体需要的地方释放药物 一束钴酸锂的端面视图,这些钴酸锂为测试目的装入了甘油(红色)。这种中空纤维是通过一种名为熔融纺丝的工艺制造而成的,由一种名为聚己内酯的生物相容性、可生物降解的聚合物组成(这种聚合物已被用于其他医疗用途)。正如其名称中的"液芯"所暗示的那样,纤维中充满了液体形式的药物。这些药物可能包括抗生素、止痛药、消炎药,甚至胰岛素。如果药物对热不敏感,则可在熔融纺丝过程中将其添加到纤维中。另一方面,如果药物不能受热,则可在纤维芯中加入临时占位材料进行纺丝。然后在后续工艺中将药物换成该材料。只要药物的分子足够小,一旦放入体内,它们就会通过纤维的多孔壁逐渐消散。如果药物的分子较大,它们反而会从纤维的两个开口端慢慢渗出。无论是哪种情况,都可以通过改变纤维的厚度、晶体结构或其他特性来调整药物的释放速度。纤维本身最终会无害溶解。Empa 研究员 Edith Perret 负责这项研究Perret 和她的团队与一家商业伙伴合作,证明了钴酸锂可以经济地进行工业化生产。该技术在现实世界中的首次应用很可能是用于外伤和内伤的抗生素缝合线。最近发表在《聚合物》杂志上的一篇论文介绍了这项研究。 ... PC版: 手机版:

相关推荐

封面图片

世卫组织发布抗菌药物发展状况报告:研发中的抗菌药太少 创新也不够

世卫组织发布抗菌药物发展状况报告:研发中的抗菌药太少 创新也不够 这份报告于2017年首次发布,评估当前的药物研发管线是否适当地应对这些耐药性病原体的感染,在上个月,世卫组织颁布了《细菌优先病原体清单(BPPL)》,以指导抗微生物药物耐药性(AMR)的研究、开发和预防控制策略。2024年的BPPL包括15个抗生素耐药病原体家族,这些病原体被分为关键、高和中三个优先级类别。总之,这两份文件旨在引导抗菌药物研发,以更好地应对日益增长的AMR威胁。当细菌、病毒、真菌和寄生虫对药物不再有反应时,AMR就会发生,使人们病情加重,增加难以治疗的感染、疾病和死亡的风险,因此世卫组织已将AMR列为全球十大公共卫生威胁之一。世卫组织负责抗微生物药物耐药性的临时助理总干事Yukiko Nakatani博士指出,AMR只会越来越严重,但我们开发新的开拓性产品的速度不够快,不足以对抗最危险和最致命的细菌。“创新仍然严重缺乏,即使新产品获得授权,获取也是一个严重的挑战。在各种收入水平的国家,迫切需要治疗的患者根本无法获得抗菌药物。”报告认为,考虑到研发所需的时间和失败的可能性,不仅研发中的抗菌药太少,而且创新也不够。在正在开发的32种治疗BPPL感染的抗生素中,只有12种可以被认为是创新的。另外,产品线方面也存在缺口,缺少儿童用药、更方便门诊病人的口服制剂以及应对耐药性上升的药物。报告指出,自2017年7月1日以来,已有13种新型抗生素获得了上市许可,但只有2种代表了新的化学类别,可被称为创新药物,这凸显了发现既能有效抗菌又对人类安全的新型抗菌药物所面临的科学和技术挑战。令人鼓舞的是,一些非传统生物制剂,如噬菌体、抗体、抗病毒制剂、免疫调节制剂和微生物调节制剂等正越来越多地被探索用作抗生素的补充和替代品。然而,对这些非传统生物制剂的研究和监管仍需进一步加强。世卫组织强调,在努力开发新的抗菌药的同时,需要同时努力确保这些药物能够公平获得,特别是在低收入和中等收入国家。 ... PC版: 手机版:

封面图片

科学家工程改造皮肤细菌 使其生产普通药物对抗痤疮

科学家工程改造皮肤细菌 使其生产普通药物对抗痤疮 痤疮的起因是毛囊被死皮细胞和油脂堵塞,继而发炎,形成我们再熟悉不过的粉刺、丘疹和白头。在打算不挤破它们的时候,我们可以用杀死油脂分泌细胞的药物或针对毛囊中细菌的抗生素来治疗。最近更多的实验性研究包括粉刺疫苗、益生菌或微针贴片,它们都能攻击致病的细菌。但如果我们能让这些细菌为我们工作呢?在这项新研究中,西班牙庞培法布拉大学(UPF)的科学家们研究了如何设计皮肤细菌来生产痤疮药物中的活性成分。他们的目标是痤疮丙酸杆菌,这是皮肤上最常见的细菌种类,也是生活在毛囊深处的细菌。过度分泌一种叫做皮脂的油脂是痤疮的常见诱因,许多痤疮药物如异维A酸都是通过杀死产生皮脂的细胞来发挥作用的。在这种情况下,痤疮丙酸杆菌被设计成能产生一种名为 NGAL 的蛋白质,这种蛋白质能介导自然产生的异维A酸。研究小组在实验室培养的人类皮肤细胞中测试了这种经过编辑的细菌,发现它能够产生和分泌 NGAL,减少皮脂分泌。在对小鼠的测试中,这种细菌也能存活并发挥作用,但由于小鼠的皮肤与我们的皮肤差别很大,因此无法通过这种方式测试其对痤疮的影响。这种技术不仅能帮助清除痤疮,还能减少对抗生素的依赖,因为抗生素正日益导致细菌产生抗药性。研究人员说,虽然还需要做更多的工作,包括首先在三维皮肤模型上进行尝试才能将这种技术用于人体试验,但它也可用于治疗其他皮肤病。首先是特应性皮炎。这项研究的首席研究员马克-居尔(Marc Güell)说:"我们开发了一个技术平台,为编辑任何细菌治疗多种疾病打开了大门。现在的重点是利用痤疮丙酸杆菌治疗痤疮,但我们也可以提供基因电路来创建智能微生物,用于与皮肤传感或免疫调节相关的应用。"这项研究发表在《自然-生物技术》杂志上。 ... PC版: 手机版:

封面图片

加州大学研发植物基聚合物 可在七个月内降解消失

加州大学研发植物基聚合物 可在七个月内降解消失 寻找传统石油基塑料和微塑料的可行替代品从未像现在这样重要。加州大学圣迭戈分校的科学家和材料科学公司 Algenesis 的最新研究表明,他们的植物基聚合物能在七个月内完成生物降解,即使是微塑料级别的生物降解。这篇论文发表在《自然-科学报告》上,其作者都是加州大学圣地亚哥分校的教授、校友或前研究科学家 。"我们刚刚开始了解微塑料的影响。我们对环境和健康影响的了解还只是皮毛,"论文作者之一、Algenesis 公司联合创始人、化学与生物化学教授 Michael Burkart 说。"我们正试图为已经存在的材料寻找替代品,并确保这些替代品在使用寿命结束后能够生物降解,而不是在环境中聚集。这并不容易。"论文的另一位作者罗伯特-波默罗伊(Robert Pomeroy)说:"大约六年前,当我们首次创造出这种藻基聚合物时,我们的初衷一直是希望它能够完全生物降解,我们有大量数据表明,我们的材料正在堆肥中消失,但这是我们第一次在微粒水平上对其进行测量。"波默罗伊也是化学与生物化学教授和 Algenesis 公司的共同创始人之一。为了测试其生物降解性,研究小组将其产品研磨成细微颗粒,并使用三种不同的测量工具来确认,当将其放入堆肥中时,这种材料正在被微生物消化。第一个工具是呼吸计。当微生物分解堆肥材料时,它们会释放二氧化碳(CO2),呼吸计会对其进行测量。这些结果与纤维素的分解进行了比较,纤维素被认为是 100% 生物降解性的行业标准。植物基聚合物的生物降解率几乎达到了纤维素的 100%。定义:可生物降解:能够在生物体的作用下迅速分解。如果某样东西被标注为可生物降解,并不意味着它能在合理的时间内或在所有环境中降解。微塑料:长度在 500 微米至 5 毫米之间的塑料碎片。关于微塑料及其对环境和人类健康的影响,还有很多未知数。聚合物: 大分子:由较小的重复分子(称为单体)组成。所有塑料都是聚合物,但并非所有聚合物都是塑料。石油基(EVA)和植物基(TPU-FC1)微塑料的粒子计数显示,随着时间的推移,EVA 几乎没有生物降解,而 TPU 在第 200 天时已基本消失。接下来,研究小组使用了水漂浮法。由于塑料不溶于水且会漂浮,因此很容易从水面上舀起。每隔 90 天和 200 天,几乎 100%的石油基微塑料都被回收,这意味着它们都没有发生生物降解。另一方面,90 天后,只有 32% 的藻类微塑料被回收,这表明超过三分之二的藻类微塑料已经生物降解。200 天后,只有 3% 的微塑料被回收,表明 97% 的微塑料已经消失。最后一项测量是通过气相色谱/质谱仪(GCMS)进行化学分析,检测到了用于制造塑料的单体的存在,表明聚合物正在被分解为其起始植物材料。扫描电子显微镜进一步显示了微生物如何在堆肥过程中定植于可生物降解的微塑料中。论文共同作者、生物科学学院教授兼 Algenesis 公司联合创始人斯蒂芬-梅菲尔德(Stephen Mayfield)说:"这种材料是第一种 在使用过程中不会产生微塑料的塑料。这不仅仅是针对产品生命周期末端和拥挤的垃圾填埋场的可持续解决方案,也是一种不会让我们生病的塑料 。"在通往可行性的漫长道路上,创造石油基塑料的环保型替代品只是其中的一部分。目前的挑战是如何将这种新材料用于原本为传统塑料制造的现有生产设备上,而 Algenesis 公司在这方面正在取得进展。他们已与多家公司合作,生产使用加州大学圣地亚哥分校开发的植物基聚合物的产品,包括用于涂层织物的特瑞堡公司和用于生产手机壳的犀牛盾公司。Burkart 表示:"当我们开始这项工作时,有人告诉我们这是不可能的。现在我们看到了不同的现实。还有很多工作要做,但我们希望给人们带来希望,这是可能做到的。" ... PC版: 手机版:

封面图片

中国研究人员的最新进展为研制抗超级细菌抗生素创造了条件

中国研究人员的最新进展为研制抗超级细菌抗生素创造了条件 对多种药物产生抗药性的细菌感染是一项重大的世界性挑战,现有的抗生素都无法治疗这种感染。来自中国的一个研究小组在《展望化学》(Angewandte Chemie)杂志上发表了一种创新抗生素的新策略,旨在抗击这些耐药细菌。这种方法利用蛋白质成分与荧光脂链相结合来开发药物。抗生素的处方往往过于随意。在许多国家,抗生素不经处方就被分发,并在工厂化养殖中使用:预防感染和提高性能。因此,抗药性在不断增加,对储备抗生素的抗药性也在增加。开发创新型替代品至关重要。我们可以从微生物本身吸取一些教训。脂蛋白是带有脂肪酸链的小分子蛋白质,细菌在与微生物竞争者的斗争中广泛使用这种蛋白质。许多脂蛋白已被批准用作药物。活性脂蛋白的共同点包括带正电荷和两亲结构,即它们有排斥脂肪的部分,也有排斥水的部分。这使它们能够与细菌膜结合,并穿透细菌膜进入内部。上海华东师范大学程义云领导的研究小组旨在通过用氟原子取代脂链中的氢原子来放大这种效应。这使得脂链同时具有憎水性(疏水性)和憎脂性(疏脂性)。它们特别低的表面能加强了与细胞膜的结合,而它们的疏脂性则破坏了膜的内聚力。研究小组利用氟化碳氢化合物和肽链合成了一个氟化脂肽谱系(物质库)。为了将两部分连接起来,他们使用了氨基酸半胱氨酸,通过二硫桥将它们结合在一起。研究人员通过测试这些分子对耐甲氧西林金黄色葡萄球菌(MRSA)的活性,对这些分子进行了筛选。MRSA 是一种广泛存在的高危菌株,几乎对所有抗生素都有抗药性。他们发现最有效的化合物是"R6F",这是一种由六个精氨酸单位和由八个碳原子和十三个氟原子组成的脂质链构成的多氟脂肪肽。为了提高生物相容性,R6F 被包裹在磷脂纳米颗粒中。在小鼠模型中,R6F 纳米粒子对 MRSA 引起的败血症和慢性伤口感染非常有效。没有观察到任何毒副作用。纳米粒子似乎以多种方式攻击细菌:它们抑制重要细胞壁成分的合成,促进细胞壁的崩溃;它们还刺穿细胞膜并破坏其稳定性;破坏呼吸链和新陈代谢;增加氧化应激,同时破坏细菌的抗氧化防御系统。这些作用结合在一起,就能杀死细菌其他细菌和 MRSA。似乎不会产生抗药性。这些见解为开发治疗多重耐药细菌的高效荧光多肽药物提供了起点。编译来源:ScitechDaily ... PC版: 手机版:

封面图片

贻贝蛋白涂层可使植入体免受感染

贻贝蛋白涂层可使植入体免受感染 即使在粗糙的潮间带,贻贝也能牢牢地附着在岩石上,这要归功于一种名为 DOPA 的氨基酸一些研究小组已经开发出了用于植入物的抗生素涂层使植入物摆脱最初的易感染状态不过,其中一些物质会持续释放抗生素有效成分,而不管植入部位处于何种状态。这种滥用药物的做法会导致细菌产生抗药性,从而降低抗生素的效果。为了寻找一种选择性更强、更持久的替代品,韩国科学家团队研究了贻贝用来粘附在岩石上的蛋白质。研究人员创造了一种生物工程 MAP(贻贝粘合蛋白),它能大量表达一种名为 DOPA 的天然氨基酸。此外,这种生物工程 MAP 还添加了庆大霉素(一种常用抗生素)和铁离子。在健康的植入部位条件下,DOPA 与离子形成牢固的结合,将离子和庆大霉素牢牢地包裹在由 MAP 制成的耐用水凝胶涂层中。然而,当有害细菌侵入时,它们会增加该部位的酸度。由于 pH 值降低,DOPA 和铁离子之间的结合力减弱,导致铁离子和庆大霉素释放出来。这样,抗生素就能释放出来,杀死该区域的所有细菌。但重要的是,涂层释放的庆大霉素只与感染程度成正比如 pH 值所示。在动物试验中,涂层在金黄色葡萄球菌感染后 8 小时内释放出 70% 的抗生素有效成分,有效消灭了所有微生物。即使在机械应力作用下,它也能牢牢地粘附在钛植入物上,并在整个骨再生阶段(约四周)保持有效。首席科学家、浦项科技大学(POSTECH)的Hyung Joon Cha 教授说:"粘性植入涂层材料的即时和持续抗菌效果有望显著提高植入手术的成功率。"有关这项研究的论文最近发表在《生物材料》杂志上,庆北大学校的科学家也参与了这项研究。相关文章:科学家开发新型粘合剂 结合贻贝的粘性和蜘蛛丝的强度科学家开发基于贻贝黏附蛋白的生物粘合剂 用于无疤痕皮肤移植技术受贻贝启发的粘合剂可在植入物和骨骼之间建立粘合关系科学家混用贻贝和蚕的蛋白质开发出了一种内伤用敷料 ... PC版: 手机版:

封面图片

MIT新模型可以快速识别和确定不应同时服用的药物

MIT新模型可以快速识别和确定不应同时服用的药物 麻省理工学院和其他研究人员开发了一种多管齐下的策略,以识别不同药物所使用的转运体。他们的方法同时利用了组织模型和机器学习算法,已经发现一种常用抗生素和一种血液稀释剂会相互干扰。资料来源:麻省理工学院,何塞-路易斯-奥利瓦雷斯麻省理工学院、布里格姆妇女医院和杜克大学的研究人员现已开发出一种多管齐下的策略,用于识别不同药物所使用的转运体。他们的方法同时利用了组织模型和机器学习算法,已经发现一种常用抗生素和一种血液稀释剂会相互干扰。"建立吸收模型的挑战之一是药物会受到不同转运体的影响。"麻省理工学院机械工程副教授、布里格姆妇女医院胃肠病学家、该研究的资深作者乔瓦尼-特拉韦索(Giovanni Traverso)说:"这项研究的目的在于我们如何模拟这些相互作用,这可以帮助我们使药物更安全、更有效,并预测到目前为止可能难以预测的潜在毒性。"更多地了解哪些转运体有助于药物通过消化道,还有助于药物开发人员通过添加辅料来增强药物与转运体的相互作用,从而提高新药的可吸收性。麻省理工学院前博士后史云华和丹尼尔-雷克是这项研究的主要作者,他们的研究成果最近发表在《自然-生物医学工程》杂志上。药物运输先前的研究已经确定了消化道中帮助药物通过肠粘膜的几种转运体。其中最常用的三种是 BCRP、MRP2 和 PgP,它们也是新研究的重点。在这项研究中,特拉韦索和他的同事采用了他们在2020年开发的一种组织模型来测量特定药物的吸收性。这种实验装置基于在实验室培育的猪肠组织,可用于将组织系统地暴露在不同的药物配方中,并测量它们的吸收情况。为了研究单个转运体在组织中的作用,研究人员使用名为siRNA的短RNA来敲除每个转运体的表达。在每个组织切片中,他们敲除了不同的转运体组合,从而研究了每种转运体如何与多种不同药物相互作用。"有几条路可以让药物通过组织,但你不知道是哪一条路。我们可以分别关闭这几条路,以便弄清楚,如果我们关闭了这条路,药物还能通过吗?如果答案是肯定的,那么它就没有使用那条路,"特拉韦索说。研究人员使用该系统测试了 23 种常用药物,从而确定了每种药物使用的转运体。然后,他们根据这些数据以及来自几个药物数据库的数据训练了一个机器学习模型。根据药物化学结构之间的相似性,该模型学会了预测哪些药物会与哪些转运体发生相互作用。利用这一模型,研究人员分析了一组新的 28 种常用药物以及 1595 种实验药物。这一筛选得出了近 200 万个潜在药物相互作用的预测结果。其中包括预测抗生素强力霉素可能与常用的血液稀释剂华法林发生相互作用。多西环素还被预测会与治疗心力衰竭的地高辛、抗癫痫药物左乙拉西坦和免疫抑制剂他克莫司发生相互作用。确定相互作用为了验证这些预测,研究人员研究了约 50 名患者的数据,这些患者在被处方强力霉素时已经服用了这三种药物中的一种。这些数据来自马萨诸塞州总医院和布里格姆妇女医院的病人数据库,数据显示,当给已经服用华法林的病人服用强力霉素时,病人血液中的华法林水平会升高,然后在停止服用强力霉素后又会下降。这些数据还证实了模型的预测,即多西环素的吸收会受到地高辛、左乙拉西坦和他克莫司的影响。此前,只有他克莫司一种药物被怀疑会与强力霉素发生相互作用。特拉韦索说:"这些都是常用药物,我们是第一个使用这种加速的硅学和体外模型来预测这种相互作用的人。这种方法让你有能力了解同时使用这些药物的潜在安全影响"。除了识别已在使用的药物之间可能存在的相互作用,这种方法还可应用于正在研发的药物。利用这项技术,药物开发人员可以调整新药分子的配方,以防止与其他药物发生相互作用或提高其可吸收性。Vivtex 是麻省理工学院前博士后托马斯-冯-埃拉赫(Thomas von Erlach)、麻省理工学院研究所教授罗伯特-朗格(Robert Langer)和特拉韦索(Traverso)于 2018 年共同创立的一家生物技术公司,旨在开发新型口服给药系统。编译自:ScitechDaily ... PC版: 手机版:

🔍 发送关键词来寻找群组、频道或视频。

启动SOSO机器人