研究显示,少吃糖好处多。它不仅有助于健康,还能提升情绪、记忆力以及改善肠道的微生物群甚至让我们更长寿。

None

相关推荐

封面图片

由超级蠕虫微生物群制成的"超级肠道"能吞噬问题塑料

由超级蠕虫微生物群制成的"超级肠道"能吞噬问题塑料 在这项新研究中,新加坡南洋理工大学(NTU Singapore)的研究人员在此前对这些耐寒黄粉虫的微生物组进行研究的基础上,构建了一个可扩展的生物体特殊肠道环境副本,他们认为该副本能够可持续地处理大量普通塑料。虽然科学家们早就知道蠕虫对塑料的胃口,但与许多生物技术一样,问题在于如何将其应用于现实世界。这种"超级肠道"背后的团队可能已经破解了这一密码。在这个过程中,很少有蠕虫受到伤害。南洋理工大学副教授曹斌说:"一只蠕虫一生只能够消耗大约几毫克塑料,因此可以想象,如果我们要依靠它们来处理塑料垃圾,需要多少蠕虫。我们的方法将蠕虫从等式中剔除,从而消除了这种需求。我们的重点是增强蠕虫肠道中有用的微生物,并建立一个能有效分解塑料的人工'蠕虫肠道'。"祝您好胃口:菜单上有高密度聚乙烯、聚丙烯和聚苯乙烯 新加坡南洋理工大学研究小组首先给三组蠕虫喂食了三种不同的普通塑料众所周知难以分解的高密度聚乙烯(HDPE)、聚丙烯(PP)和聚苯乙烯(PS),为期 30 天(幸运的对照组则食用燕麦粥)。随后,科学家们从啃食塑料的蠕虫内脏中提取了微生物组,并将其放入装有合成营养物质和三种塑料的烧瓶中培养,让它们在六周内发育成人工肠道。他们发现,与对照组的蠕虫相比,实验室培养的蠕虫肠道中产生了更多的塑料降解细菌,而且每种细菌在处理特定材料时都表现出更高的效率。研究人员(左起)Sakcham Bairoliya、曹斌和刘一楠博士这项研究的第一作者刘一楠博士说:"我们的研究是首次成功尝试从喂食塑料的蠕虫肠道微生物组中培养塑料相关细菌群落。通过将肠道微生物组暴露在特定条件下,我们能够提高人工'蠕虫肠道'中塑料降解细菌的丰度,这表明我们的方法是稳定的,可以大规模复制。"虽然这只是概念验证,但研究人员认为,在更大范围内培育这种人工"超级肠道"并不存在障碍,而且这种人工"超级肠道"还可以专门用于处理特定材料。他们现在正在研究蠕虫坚韧肠道过程背后的分子生物学,希望能更容易地设计出分解塑料的细菌群落,用于商业用途。这项研究发表在《国际环境》杂志上。 ... PC版: 手机版:

封面图片

新型试验小鼠拥有100%功能性人类免疫系统和近似人类肠道微生物群

新型试验小鼠拥有100%功能性人类免疫系统和近似人类肠道微生物群 德克萨斯大学圣安东尼奥健康科学中心的研究人员成功地改造出了一种具有与人类相同免疫反应的小鼠,而这正是之前许多研究人员失败的地方。虽然小鼠在研究中很常见,而且被认为是最好的工作动物之一,但它们远非完美的人类替代品。一个主要的挑战是小鼠体内的许多基因与人类基因不同,因此它们的免疫系统与我们的免疫系统反应截然不同。这种新型小鼠被称为 TruHuX或 THX,它将使研究障碍成为过去。这种小鼠拥有功能完备的人体免疫系统,最终会像我们任何人一样对治疗做出反应。领导这项开创性研究的医学博士保罗-卡萨利(Paolo Casali)说:"THX 小鼠为人类免疫系统研究、人类疫苗开发和疗法测试提供了一个平台。"那么,这对医学研究之外的所有人意味着什么呢?它有可能大大加快药物和免疫疗法的研发速度,缩短"试验和出错"的时间,让科学家们能够在对疗效和安全性更有信心的情况下将治疗方法用于人体试验。卡萨利还认为,THX 小鼠可以取代目前在非人灵长类动物身上进行的免疫学和微生物学测试。小鼠还为新的癌症免疫疗法、细菌和病毒疫苗开发以及疾病建模打开了大门。在未来的某个时刻,技术很可能会促进复杂的人工模型的创造,以取代动物进行医学测试,但遗憾的是,在此之前,它仍然是药物开发和疾病研究的重要组成部分。几十年来,科学家们一直在努力完善人源化小鼠。第一个模型是在 20 世纪 80 年代设计的,用于模拟人类艾滋病病毒感染和机体对艾滋病病毒的反应,现在仍然是研究的重要组成部分。迄今为止,科学家们通过向免疫缺陷小鼠注射人类外周淋巴细胞、未成熟造血干细胞或其他人类细胞来建立这种模型。但这些小鼠的寿命往往很短,会因"人性化"而出现一系列健康问题,而且与其他小鼠模型存在同样的问题,即它们的免疫系统会做出与人类截然不同的反应。卡萨利的团队还从免疫缺陷小鼠(NSG W41突变体)开始,通过动物左心室注射从脐带血中提纯的人类干细胞。经过数周时间让移植细胞沉淀后,再用17b-雌二醇(E2)雌激素对小鼠进行激素调节。研究小组之前的研究发现,这种强效雌激素能促进干细胞存活和淋巴细胞分化,并激活抗体以应对病毒和细菌。归根结底,THX 是一种"超人类"小鼠,拥有完整的人类免疫系统淋巴结、生殖中心、胸腺人类上皮细胞、人类 T 淋巴细胞和 B 淋巴细胞、记忆性 B 淋巴细胞和浆细胞而且可以做出与人类相同的反应。研究小组目前正在利用 THX 小鼠更好地了解人类对 SARS-CoV-2 的免疫反应,并研究参与人类浆细胞活性及其抗体反应的表观遗传因素,这有可能开启新的病毒和癌症疗法。这项研究发表在《自然-免疫学》杂志上。 ... PC版: 手机版:

封面图片

寻找抗生素耐药性的起源:科学家发现18种前所未见的肠道微生物

寻找抗生素耐药性的起源:科学家发现18种前所未见的肠道微生物 预计到 2050 年,抗生素耐药感染将取代癌症成为导致死亡的主要原因,因此了解和限制抗生素耐药细菌的传播成为全世界的当务之急。在最近发表在《美国国家科学院院刊》(PNAS)上的一篇论文中,由马萨诸塞州眼耳科医院首席科学官迈克尔-吉尔摩(Michael S. Gilmore)博士共同领导的一个研究小组描述了他们发现的 18种从未见过的肠球菌类型细菌,这些细菌含有数百个新基因这些发现可能会为抗生素耐药性提供新的线索,因为科学家们正在寻找遏制这些感染的方法。肠球菌是导致耐多药感染的主要原因,尤其是在手术后和住院患者中。这种感染可导致死亡,每年增加的医疗成本超过 300 亿美元。抗生素的重要性"在过去的 75 年中,抗生素挽救了数亿人的生命,并为各类手术的成功做出了巨大贡献,"身兼哈佛医学院传染病研究所所长的吉尔摩说。"然而,在过去的 30 年里,许多最棘手的细菌对抗生素的耐药性越来越强,现在已经达到了危机的程度。我们的发现可能会加深人们对耐药基因如何传播到医院细菌并威胁人类健康的理解"。青霉素等抗生素是在 20 世纪 20 年代被发现的,它们是由土壤中的微生物自然产生的化合物。吉尔摩指出,产生抗生素的微生物在森林地面的腐烂树叶和植物物质中繁衍生息,并赋予森林土壤以气味。昆虫在抗生素耐药性中的作用吉尔摩和布罗德细菌基因组学组主任阿什莉-厄尔(Ashlee Earl)博士组建了一支国际科学家团队,其中包括精英冒险家,在全球偏远角落寻找可能含有肠球菌的粪便、土壤和其他样本。他们收集的标本种类繁多,包括在亚南极水域迁徙的企鹅、乌干达的杜鹃和大象;从巴西到美国的昆虫、双壳类动物、海龟和野生火鸡;蒙古的红隼和秃鹫;澳大利亚的沙袋鼠、天鹅和袋熊;以及欧洲的动物园动物和野生鸟类。研究小组之前的收集工作发现了新类别的细菌毒素,并表明肠球菌大约产生于 4.25 亿年前,当时第一批动物千足虫和蠕虫的祖先出现在陆地上。在四条腿的动物上岸之前,它们可能统治了地球大约 5000 万年。探险科学家史蒂维-安娜-普卢默(Stevie Anna Plummer)与 2016 年尼泊尔探险期间采集的粪便和水样,为全球微生物研究收集样本。图片来源:探险科学家(摄影:保罗-阿莫斯)研究人员最近的采集工作将肠球菌菌株的属种多样性扩大了 25% 以上,同时还发现了更多线索,揭示出昆虫和其他无脊椎动物可能是迄今为止肠球菌细菌(包括天然抗生素耐药菌种)的最大天然来源。厄尔说:"直到最近,我们对肠球菌遗传学的大部分了解都来自那些让我们生病的肠球菌,这是一个问题就像试图了解黑暗却从未见过光明一样。在公民科学家的帮助下,将我们的视野扩展到医院以外的地方,为我们提供了所需的对比,以确定它们是如何让医院里的人生病的,同时也为公众提供了共同拥有解决方案的机会"。吉尔摩认为,昆虫一直在吃腐烂的植物材料,在此过程中自然会给自己摄入一定剂量的抗生素。他假设,数亿年来,这些昆虫肠道中的细菌(如肠球菌)一直接触这些抗生素,并产生了抗药性。20 世纪 40 年代和 50 年代,当人类首次开始服用抗生素时,抗药性已经存在于环境中,并进入了导致人类感染的细菌中。COVID-19大流行揭示了自然界蕴藏着许多人类面临的传染风险。这项研究表明,自然界中的昆虫及其近亲是一个巨大的、未定性的微生物基因库,这些未被发现的微生物基因与那些导致一些抗生素耐药性最强的感染的微生物基因密切相关。编译自:ScitechDaily ... PC版: 手机版:

封面图片

哈佛和麻省理工学院科学家发现肠道中能破坏胆固醇的微生物

哈佛和麻省理工学院科学家发现肠道中能破坏胆固醇的微生物 研究发现,在胆固醇水平降低的人群中,有多种细菌能代谢胆固醇。肠道微生物群的变化与一系列疾病有关,如 2 型糖尿病、肥胖症和炎症性肠病。现在,麻省理工学院和哈佛大学布罗德研究所以及麻省总医院的一个研究小组发现,肠道中的微生物也可能影响心血管疾病。在发表于《细胞》(Cell)杂志的一项研究中,研究小组确定了在肠道中消耗胆固醇的特定细菌种类,它们可能有助于降低人体内的胆固醇和心脏病风险。拉姆尼克-泽维尔实验室、布罗德代谢组学平台的成员和合作者分析了弗拉明汉心脏研究(Framingham Heart Study)1400 多名参与者的代谢物和微生物基因组。研究小组发现,一种名为"颤螺旋菌"(oscillibacter)的细菌会吸收并代谢周围环境中的胆固醇,肠道中这种微生物含量较高的人胆固醇水平较低。他们还确定了这种细菌可能用来分解胆固醇的机制。这些结果表明,以特定方式操纵微生物组的干预措施有朝一日可能有助于降低人体内的胆固醇。这些发现还为更有针对性地研究微生物组的变化如何影响健康和疾病奠定了基础。泽维尔是布罗德研究所的核心成员、免疫学项目主任和传染病与微生物组项目联合主任。他还是哈佛医学院和麻省总医院的教授。泽维尔实验室的博士后研究员李晨皓和研究科学家马丁-斯特拉扎尔是这项研究的共同第一作者。在过去的十年中,其他研究人员发现了肠道微生物组的组成与心血管疾病因素之间的联系,如人的甘油三酯和餐后血糖水平。但科学家们还无法针对这些联系采取治疗措施,部分原因是他们对肠道内的代谢途径缺乏全面的了解。在这项新研究中,布罗德团队更全面、更详细地了解了肠道微生物对新陈代谢的影响。他们将枪式元基因组测序技术与代谢组学技术相结合,枪式元基因组测序技术能分析样本中所有微生物的DNA,代谢组学技术能测量数百种已知和数千种未知代谢物的水平。他们利用这些工具研究了弗雷明汉心脏研究的粪便样本。斯特拉扎尔说:"项目成果强调了高质量、经过整理的患者数据的重要性。这使我们能够注意到那些非常微妙且难以测量的效果,并直接对其进行跟踪。"这种方法发现了微生物与代谢特征之间的 16000 多种关联,其中有一种关联特别强烈:与缺乏相关属种细菌的人相比,体内有几种颤螺旋菌属细菌的人胆固醇水平较低。研究人员发现,该属细菌在肠道中的数量惊人,平均每 100 个细菌中就有 1 个。研究人员随后想弄清微生物分解胆固醇的生化途径。为此,他们首先需要在实验室中培养这种生物。幸运的是,实验室多年来一直在收集粪便样本中的细菌,为此他们建立了一个独特的菌种库,其中也包括颤螺旋菌。在成功培育出这种细菌后,研究小组利用质谱法确定了细菌中胆固醇代谢最可能产生的副产品。这使他们能够确定细菌降低胆固醇水平的途径。他们发现,细菌将胆固醇转化为中间产物,然后再由其他细菌分解并排出体外。接下来,研究小组利用机器学习模型确定了负责这种生化转换的候选酶,然后在实验室中的某些颤螺旋菌中检测到了这些酶和胆固醇分解产物。研究小组发现了另一种肠道细菌 - 产粪甾醇真杆菌(Eubacterium coprostanoligenes),它也有助于降低胆固醇水平。这种细菌携带一种基因,科学家们此前已经 先前已经证明参与胆固醇代谢。在新的研究中,研究小组发现,Eubacterium 可能与Oscillibacter对胆固醇水平有协同作用,这表明,研究细菌物种组合的新实验可能有助于揭示不同微生物群落如何相互作用影响人类健康。人类肠道微生物组中的绝大多数基因仍未定性,但研究小组相信,他们在确定胆固醇代谢酶方面取得的成功,为发现受肠道微生物影响的其他类似代谢途径铺平了道路,这些代谢途径可以作为治疗靶点。"有许多临床研究试图进行粪便微生物组转移研究,但对微生物之间以及微生物与肠道之间如何相互作用却不甚了解,"李说。"我们希望先退一步,专注于一种特定的微生物或基因,我们就能系统地了解肠道生态学,并提出更好的治疗策略,比如针对一种或几种微生物进行治疗。""由于肠道微生物组中存在大量功能未知的基因,我们预测代谢功能的能力还存在差距,"他补充说。"我们的工作强调了肠道微生物可能改变其他固醇代谢途径的可能性。我们可能会有很多新发现,这些发现将使我们更接近于从机理上理解微生物是如何与宿主相互作用的。"编译自:ScitechDaily ... PC版: 手机版:

封面图片

- 在过去的10年中,我们对肠道微生物组的了解比之前1000年的了解还要多。我们发现,生活在你肠道中的细菌可能处于一种功能失调的

- 在过去的10年中,我们对肠道微生物组的了解比之前1000年的了解还要多。我们发现,生活在你肠道中的细菌可能处于一种功能失调的状态,引起炎症,使你无法吸收营养。我们还发现,如果你及早介入,可以对肠道微生物组进行最大的改善。 (图5 基金会伙伴研究显示的结果令人惊奇:给婴儿喂食这种益生菌可以帮助他们将自身的微生物群落转变为积极状态,从而使他们能够健康成长并发挥出他们的全部潜力。这可能是预防营养不良的一个超级工具。) - 「核能是唯一一种可以在地球上几乎任何地方,日夜、每个季节都可靠提供无碳能源的能源,而且已被证明在大规模上行之有效。」 - 我一直在思考关于我朋友查克·芬尼的事情,他在十月份去世了,他是他所说的「活着就要给予」的巨大践行者。新一年我也不断在反思真正实践这个理念意味着什么。 主要内容如下: 当你回想起2023年,你会怎样记得它? 对我来说,这将永远是我成为祖父的一年。这是我与亲人们一起度过了许多宝贵时光的一年无论是在泡菜球场上还是玩一场激动人心的卡坦岛游戏。而2023年也标志着我第一次将人工智能用于工作和其他严肃的原因,而不仅仅是用来娱乐,为朋友们创作恶搞歌曲。 这一年让我们瞥见了AI将如何塑造未来。随着2023年的结束,我比以往任何时候都更多地思考着今天年轻人将继承的世界。在去年的信中,我写到成为祖父的可能性让我反思了我的孙女出生时将面临的世界。现在,我更多地思考她将继承的世界将会是什么样,几十年后,当她们这一代人掌管世界时。 我可以开始想象了:她将使用的工具,她将如何与亲人保持联系,这些创新将帮助解决的问题。我们现在对人工智能能够独立完成哪些类型的工作,以及它将作为哪些工作的副驾驶有了更好的了解。并且比以往任何时候都更清楚,AI可以如何被用来改善教育、心理健康等方面的获取。这激励着我确保这项技术有助于减少而不是加剧我们在世界各地看到的可怕不平等。我一直坚信创新的力量,它能为每个孩子提供平等的生存和发展机会。AI也不例外。 一个新时代的早期往往充满了许多变化。如果你年纪足够大,回想一下互联网的开始。起初,你可能不知道有多少人在使用它。但随着时间的推移,它变得越来越普遍,直到有一天,你意识到大多数人都有电子邮件地址,会在线上购物,并使用搜索引擎来回答他们的问题。 我喜欢今年认识我的新孙女。 我们现在正处于这一转变的起点。这是一个令人兴奋又困惑的时刻,如果你还没有弄清楚如何最好地使用AI,你并不孤单。我原本打算今年在基金会的战略审查中使用AI工具,这需要阅读数百页的简报材料,AI可以为我准确地进行总结。但旧习惯难改,我最终还是以我一直以来的方式进行了准备。 当然,AI远非2023年的唯一特点。数百万人继续承受着俄罗斯对乌克兰战争以及埃塞俄比亚战争后果带来的难以承受的悲痛。我为以色列人和巴勒斯坦人、苏丹人民的持续痛苦而心碎。同时,由于气候变化导致的极端天气事件更频繁,更多的人被迫承受苦难。全球家庭继续因通货膨胀和经济增长缓慢而受到严重打击。 毫无疑问,这是充满挑战的时代,但我对未来仍然保持乐观。创新的速度从未如此之快。我们在艰难问题上取得了巨大进步如阿尔茨海默病、肥胖症和镰状细胞病这将改善数百万人的生活。我已故的朋友汉斯·罗斯林曾说:“事情可能很糟,但在变得更好。”这是一个很好的提醒,表明进步不仅可能,而且每天都在发生。 这就是为什么我仍然致力于确保,即使面临挫折,世界仍然会做更多的事情来帮助最贫困的人。我通过盖茨基金会完成了这项工作的大部分,我的同事们仍致力于改善全球健康、教育、性别平等等方面。虽然我可以写上千页来描述他们与我们的合作伙伴所做的令人难以置信的工作,但这封信只聚焦于一些最激动人心的突破。 我还写了为什么我对世界气候进展持乐观态度。我的大部分气候和能源工作是通过突破性能源完成的,尽管盖茨基金会正在帮助低收入和中等收入国家适应变暖的世界。我还继续私人资助其他领域的研究,如阿尔茨海默病。我还在为微软提供建议,这让我了解即将到来的产品以及它们如何用于使世界变得更加公平。 我很幸运,我的工作让我了解世界变得更好的所有方式。当你了解解决这些挑战需要做什么时,我们面临的挑战感觉就没那么可怕了。在这封信中,我将分享我对未来一年保持乐观的几个原因。我希望它们能让你像我一样对未来的所有进步感到兴奋。 AI 即将为创新管道注入强大动力 我的工作始终植根于一个核心理念:创新是进步的关键。这就是我为什么创立微软,也是我和梅琳达二十多年前创立盖茨基金会的原因。 创新是我们的生活在过去一个世纪中如此大幅改善的原因。从电力和汽车到医药和飞机,创新使世界变得更好。今天,由于IT革命,我们远比以前更高效。最成功的经济体由不断进化以满足不断变化的世界需求的创新产业驱动。 不过,我最喜欢的创新故事始于我最喜欢的统计数据之一:自2000年以来,世界上在五岁前死亡的儿童数量减少了一半。 我们是如何做到的?一个关键原因是创新。科学家们提出了制造疫苗的新方法,既快速又便宜,但同样安全。他们开发了适用于世界上最偏远地区的新的交付机制,这使得接触更多的孩子成为可能。他们还创造了新的疫苗,可以保护儿童免受像轮状病毒这样的致命疾病。 在资源有限的世界中,你必须找到最大化影响的方法。创新是每一美元花费获得最大回报的关键。而人工智能即将以我们前所未见的速度加速新发现的速度。 到目前为止,最大的影响之一是在创造新药上。药物发现需要浏览大量的数据,AI工具可以显著加快这一过程。一些公司已经在研发这种方式开发的癌症药物。但盖茨基金会在AI方面的一个关键优先事项是确保这些工具也解决了对世界上最贫穷的人群影响最大的健康问题,如艾滋病、结核病和疟疾。 我们正在仔细审视当前管道中的广泛AI创新,并与我们的合作伙伴合作,使用这些技术来改善低收入和中等收入国家的生活。 在秋季,我前往塞内加尔,与从事这项工作的一些出色研究人员会面,并庆祝基金会的大挑战计划20周年纪念。当我们首次启动大挑战盖茨基金会的旗舰创新项目时,它只有一个目标:确定健康领域的最大问题,并向可能解决这些问题的本地研究人员提供资助。我们询问来自发展中国家的创新者他们将如何应对他们社区的健康挑战,然后我们给予他们实现这一目标的支持。 我在塞内加尔遇到的许多人正在接受首次的人工智能大挑战。当我们在2003年首次设定这个目标时,基金会并没有考虑到人工智能项目,但我总是被那些能够利用最新技术来解决大问题的杰出科学家所激励。 他们的许多工作都处于最初的开发阶段我们有很大可能在2024年甚至2025年都看不到它们被广泛使用。有些可能根本就无法成功。接下来一年的工作将为本十年后期的大规模技术繁荣做好准备。 然而,看到有多少创造力被带到了这个领域,仍然令人印象深刻。以下是一些当前正在探索的最具雄心的问题的小样本: AI 能对抗抗生素耐药性吗?抗生素在消除感染方面具有神奇的能力,但如果使用过于频繁,病原体可能会学会忽视它们。这就是所谓的抗微生物耐药性,或者称为AMR,这在全球范围内是一个巨大的问题尤其是在非洲,那里的AMR死亡率最高。来自加纳Aurum研究所的Nana Kofi Quakyi正在开发一个AI驱动的工具,该工具可以帮助医疗工作者在不增加AMR的情况下开具抗生素处方。这个工具将会筛查所有可用的信息包括当地的临床指南和关于哪些病原体当前在该地区有发展耐药性风险的健康监测数据并为最佳的药物、剂量和疗程提出建议。 AI 能为每个学生带来个性化的辅导吗?如今正在试用的人工智能教育工具令人震惊,因为它们是为每个独立的学习者量身定制的。其中一些比如Khanmigo和MATHia已经非常出色,而且在未来几年中它们只会变得更好。这种技术最让我兴奋的一点是,无论学生住在哪里,都有可能将其本地化。例如,内罗毕的一个团队正在研究Somanasi,这是一个与肯尼亚课程相符的基于人工智能的辅导工具。这个名字在斯瓦希里语中意为“一起学习”,并且这个辅导工具在设计时考虑到了文化背景,所以对使用它的学生来说感觉很熟悉。 AI 能帮助人们评估他们的HIV风险吗?对许多人来说,与医生或护士谈论他们的性史可能会感到不舒服。但是,这些信息对于评估HIV等疾病的风险和开具预防性治疗非常重要。一个新的南非聊天机器人旨在使HIV风险评估变得更容易。它就像一个无偏见、不带任何评判的咨询师,可以提供全天候的建议。Sophie Pascoe和她的团队正在专门为边缘化和脆弱的人群开发它这些人群在寻求预防护理时常常面临歧视和歧视。他们的研究结果表明,这种创新方法可能帮助更多的女性了解自己的风险,并采取行动保护自己。 AI 能否让每个卫生工作者更容易获取医疗信息?当你在治疗一个危重病人时,你需要快速获取他们的医疗记录,以了解他们是否对某种药物过敏或有心脏病史。在像巴基斯坦这样的地方,许多人没有任何记录在案的医疗史,这是一个巨大的问题。玛丽亚姆·穆斯塔法的团队正在开发一个语音启动的移动应用程序,这将使巴基斯坦的孕产妇卫生工作者更容易创建医疗记录。它会询问一系列关于病人的问题,并使用回答来填写标准的医疗记录。希望通过为卫生工作者提供更多的数据,可以改善该国的孕产妇结果,这是全球最糟糕的之一。 像这样的项目前方还有很长的路要走。还存在着重大的难关,比如如何在不牺牲质量的情况下扩大项目规模,如何提供充足的后端访问以确保它们能够长期运行。但我乐观地认为我们会解决这些问题。看到如此多的研究人员已经在思考如何在低收入和中等收入国家部署新技术,我感到非常鼓舞。

封面图片

近百年来,人类社会的发展剧烈地改变了地球的环境,而我们也正在为这种改变付出极大的代价所有与人类「大脑-肠道-微生物」相互作用改变

近百年来,人类社会的发展剧烈地改变了地球的环境,而我们也正在为这种改变付出极大的代价所有与人类「大脑-肠道-微生物」相互作用改变有关的疾病,在过去10 年中的盛行率都急剧上升,甚至已达到危及公共卫生的水平线。在相关医疗卫生系统和制药工业集团的支持下,这些疾病的致死率虽然没有显著升高,但整体盛行率仍在持续上升。可见,目前人类的寿命增长了,但健康品质却严重下降。 在这本开创性的医学科普新作中,胃肠道疾病领域先驱埃默伦·迈耶博士基于40年的科学研究,证明肠道微生物组在21世纪人类健康危机中发挥关键作用。迈耶博士在书中全面探讨了肠道微生物组的改变与抑郁症、自闭症、糖尿病、心血管疾病病和癌症等慢性疾病发展之间的必然联系,以及有关Covid-19等传染病易感性的前沿研究。 迈耶博士认为,应对公共卫生危机,关键在于遏制慢性病和传染性疾病的发生率。为了扭转慢性病和传染病的发展趋势,我们必须改变今天的生活方式,限时进食,改善新陈代谢,更好地控制基于肠道的免疫系统和微生物系统,充分利用食物的自然治愈力,预防食品体系对人类健康造成的有害影响。 麦耶博士相信,未来我们必将战胜病毒大流行,在这个紧要关头,我们更要正视健康警钟的鸣响,切实可行地透过健康新举措造福人类,让我们更健康、更长寿。 作者简介 · · · · · · 【美】艾默伦‧迈耶(Emeran Mayer),医学博士,过去40年一直致力于研究大脑-身体相互连结的研究,特别强调大脑-肠道连结。他被认为是脑-肠微生物群相互作用和慢性内脏痛领域的先驱和世界领导者。 他是奥本海默压力与复原力神经生物学中心的执行主任,也是加州大学洛杉矶分校消化疾病研究中心的共同主任。他的研究在过去25年中一直得到美国国立卫生研究院的支持。 他的研究成果曾被美国国家公共广播电台(NPR)、美国公共电视网(PBS)、纪录片《寻找平衡》(In Search of Balance)等广泛报导。他的作品经常发表于《大西洋月刊》《科学人》《纽约时报》《卫报》等出版品。

🔍 发送关键词来寻找群组、频道或视频。

启动SOSO机器人