新的mRNA癌症疫苗被设计为靶向淋巴结 以获得更强的免疫反应

新的mRNA癌症疫苗被设计为靶向淋巴结以获得更强的免疫反应塔夫茨大学的研究人员创造了一种新的mRNA癌症疫苗,它被设计为将其分子带到淋巴结而不是肝脏。在小鼠身上进行的测试显示,肿瘤受到了明显的抑制,在相当大比例的情况下,癌症完全消失。活细胞在被称为核糖体的结构中,根据它们从mRNA分子中得到的指令生产蛋白质。如果能向核糖体提供定制指令,理论上可以生产任何需要的蛋白质--这就是mRNA疗法背后的想法,它产生抗原,“训练”免疫系统识别病毒等“入侵者”并发起免疫反应。最近几年主要由于COVID-19大流行病,这些疗法的发展大大加快了。这一突破现在为一系列其他疾病的mRNA疗法提供了可能性,包括艾滋病毒、流感、疟疾、莱姆病、疱疹、带状疱疹,甚至是在心脏病发作后修复心脏组织。然而,最令人兴奋的目标也许是癌症。在这种情况下,mRNA与其说是一种预防性疫苗,不如说是一种治疗性疫苗,给癌症患者使用,以治疗现有的肿瘤,防止复发或转移。试验表明,该技术可以与免疫疗法等其他治疗方法很好地搭配。在这项新的研究中,塔夫茨大学的研究人员调查了通过改变mRNA在体内的最终位置来改善免疫反应的方法。研究小组说,在大多数情况下,mRNA往往会在肝脏中结束,但如果将分子送到淋巴系统,就会产生更有效的免疫反应,在那里,免疫细胞被直接训练来识别入侵者。为此,科学家们调整了运输mRNA的脂质纳米颗粒的配方。这导致来自血液的不同分子聚集在颗粒表面,而这些分子又与不同器官的受体结合。在测试了一些特性组合后,该团队创造了脂质纳米颗粒,该颗粒以三比一的比例有利于向淋巴结输送。在那里,疫苗被大约三分之一的树突状细胞和巨噬细胞所吸收。这些关键的免疫细胞训练了B细胞和T细胞,使其针对特定的抗原,从而产生了更强的抗癌免疫反应。在对患有转移性黑色素瘤的小鼠进行的测试中,研究小组发现,当与另一种被称为抗PD-1疗法的治疗方法相结合时,该疗法明显抑制了肿瘤。更好的是,40%的病例出现了完全缓解,而且癌症没有复发--即使科学家后来给它们注射了转移性肿瘤细胞。“癌症疫苗一直是一个挑战,因为肿瘤抗原并不总是像病毒和细菌上的抗原那样看起来那么‘陌生’,而且肿瘤可以主动抑制免疫反应,”该研究的作者陈津津(音译)说。“这种癌症疫苗唤起了更强的反应,并且能够携带大型和小型抗原的mRNA。我们希望它不仅可以成为癌症疫苗的通用平台,还可以成为针对病毒和其他病原体的更有效的疫苗。”这一突破可能为我们日益增长的mRNA癌症治疗“武器库”增添一种新的“武器”,其中一些已经在进行人体试验。该研究发表在《美国国家科学院院刊》(PNAS)上。PC版:https://www.cnbeta.com/articles/soft/1305087.htm手机版:https://m.cnbeta.com/view/1305087.htm

相关推荐

封面图片

实验性疫苗对癌症进行重新编程以发起免疫疗法攻击

实验性疫苗对癌症进行重新编程以发起免疫疗法攻击免疫疗法是一种新兴的治疗方法,它涉及为免疫系统增压以更好地对抗癌症,并取得了一些非常有希望的早期结果。最常见的一种免疫疗法是通过从病人身上取出T细胞,对它们进行编程以识别特定的癌症抗原,并让它们在体内释放,以猎杀带有这些抗原的癌症。问题是,这需要一定程度的猜测,以确定哪些抗原对每个病人最有用。因此,在新的研究中,斯坦福大学医学院的科学家们开发了一种方法,教导T细胞识别更广泛的抗原,增加病人的免疫系统成功攻击其癌症的机会。诀窍是将癌细胞转化为巨噬细胞,巨噬细胞是一种抗原提呈细胞(APC),可以教T细胞寻找什么。该研究的资深作者RaviMajeti说:"我们假设,也许被重新编程为巨噬细胞的癌细胞可以刺激T细胞,因为这些APC携带着它们来自癌细胞的所有抗原"。为了测试这个想法,研究人员诱导小鼠的白血病细胞转化为APCs。果然,对照组的小鼠成功清除了它们的癌症。更妙的是,该疫苗策略似乎能够长期发挥作用,防止疾病复发。Majeti说:"当我们第一次看到有免疫系统工作的小鼠清除白血病的数据时,我们被震惊了。我们无法相信它的效果如此之好。更重要的是,研究表明,免疫系统记住了这些细胞教给它们的东西。当我们在最初的肿瘤接种100多天后将癌症重新引入这些小鼠体内时,它们仍然有强烈的免疫反应来保护它们。"接下来,该团队在患有三种不同类型实体肿瘤--纤维肉瘤、乳腺癌和骨癌的小鼠身上测试了这项技术。结果并不像对白血病那样有效,但仍然显示出积极的效果。最后,研究人员用取自人类患者的细胞进行了实验。结果,来自人类白血病细胞的APCs似乎成功地教导来自同一病人的T细胞应该寻找什么。这表明该方法最终可以应用于人类,但仍需做更多工作。Majeti说:"重新编程的肿瘤细胞可以导致小鼠对癌症的持久和系统性攻击,并且与人类患者的免疫细胞有类似的反应。未来我们也许能够取出肿瘤细胞,将其转化为APC,并将其作为治疗性癌症疫苗回馈给患者。最终,我们可能能够将RNA注入患者体内,并转化足够的细胞,以激活免疫系统对抗癌症,而不必首先取出细胞。在这一点上,那是科幻小说,但那是我们感兴趣的方向"。该研究发表在《癌症发现》杂志上。...PC版:https://www.cnbeta.com.tw/articles/soft/1347939.htm手机版:https://m.cnbeta.com.tw/view/1347939.htm

封面图片

MIT评论:癌症疫苗似乎有望取得成功

MIT评论:癌症疫苗似乎有望取得成功几十年来,药物开发商一直致力于开发疫苗来帮助人体免疫系统对抗癌症,但没有取得太大成功。但过去一年的可喜结果表明该战略可能正在达到一个转折点。这些疗法最终会奏效吗?Moderna和BioNTech正在开发的个性化癌症疫苗是针对每位患者的特定癌症量身定制的。研究人员收集了患者的一块肿瘤和健康细胞的样本。他们对这两个样本进行测序并进行比较,以识别肿瘤特有的突变。然后将这些突变输入人工智能算法,选择最有可能引发免疫反应的突变。这些新抗原共同形成了一种肿瘤的“罪犯素描”,这是一幅帮助免疫系统识别癌细胞的粗略图片。新抗原被置于mRNA链上并注射到患者体内。从那里,它们被细胞吸收并转录成蛋白质,这些蛋白质在细胞表面可以引发免疫反应。——(节选)

封面图片

新的纳米颗粒设计可能会改善mRNA疫苗对癌症的治疗效果

新的纳米颗粒设计可能会改善mRNA疫苗对癌症的治疗效果疫苗通过让身体做好对抗细菌或病毒等病原体的准备,帮助预防感染。大多数传统疫苗含有减弱或死亡的细菌或病毒,以触发免疫反应。然而,mRNA疫苗(例如COVID-19疫苗)的工作原理是引入一段与病毒外部的蛋白质相对应的mRNA,从而产生抗体并标记病毒以进行破坏。一旦产生,抗体就会保留在体内,因此如果免疫系统再次暴露于病原体,它可以快速做出反应。现在,约翰·霍普金斯大学医学院的研究人员进行的一项新研究可能找到了一种改善mRNA疫苗递送以治疗传染性和非传染性疾病的方法。当使用mRNA疫苗治疗癌症等非传染性疾病时,面临的挑战是将材料传递给大量树突状细胞,树突状细胞是一种特殊类型的免疫细胞,可教导免疫系统(特别是T细胞)寻找并摧毁癌细胞。该研究的通讯作者乔丹·格林(JordanGreen)表示:“免疫系统的设计目的是通过放大反应来发挥作用,树突状细胞会教导其他免疫细胞在体内寻找什么。”制造更强效的疫苗需要携带mRNA的纳米颗粒到达、进入树突状细胞并在其中表达。表达后,mRNA会降解,由此产生的免疫反应持续时间更长。COVID-19mRNA疫苗包含由脂质(一种脂肪酸)制成的纳米颗粒,注射到肌肉中。但是,肌肉中的树突状细胞相对较少。将mRNA疫苗注射到血液中也会导致输送问题,因为疫苗往往会直接进入肝脏,并在那里被分解。因此,研究人员将目光投向了一个树突状细胞数量远远多于的器官:脾脏。格林说:“我们的目标是开发一种不会直接发送到肝脏的纳米颗粒,它可以有效地教导免疫系统细胞寻找并摧毁适当的目标。”在测试了多种材料后,研究人员决定将其mRNA包裹在基于聚合物的纳米颗粒中,其中亲水分子和疏水分子的比例恰到好处,使其能够进入目标细胞。这些聚合物含有对特定组织类型具有亲和力的分子,这里是脾脏。此外,纳米颗粒中添加了辅助剂或佐剂以激活树突状细胞。他们在小鼠身上测试了他们的新型纳米颗粒结构,发现它避开了肝脏,并被脾细胞吸收,其水平比mRNA本身高出约50倍。纳米颗粒到达的脾细胞中近80%是目标树突状细胞。在经过基因工程改造的小鼠中,当纳米颗粒传递其mRNA内容物时,免疫细胞会发出红光,研究人员发现,脾脏中5%至6%的树突状细胞成功吸收、打开并处理了纳米颗粒。这种现象在树突状细胞中比在其他免疫细胞中更容易观察到。然后纳米粒子生物降解成安全的副产品。证明新的纳米颗粒能够成功地靶向脾脏的树突状细胞之后,研究人员为其配备了免疫治疗药物,并再次在小鼠身上进行了测试。他们发现,一半的结直肠癌小鼠模型在接受两次注射后长期存活,而接受其他含有免疫治疗药物的纳米颗粒制剂或单独免疫治疗药物治疗后,只有10%至30%的存活率。当幸存的小鼠被给予额外的结直肠癌细胞时,它们都无需额外治疗即可存活,这向研究人员表明,它们的纳米颗粒提供了长期免疫反应,可防止癌症复发。他们还发现,治疗21天后,60%的细胞杀伤T细胞识别并攻击结直肠癌细胞。研究人员在患有黑色素瘤的小鼠模型中发现了类似的反应,其中大约一半的同类型T细胞准备好攻击黑色素瘤细胞。Green说:“纳米颗粒输送系统能够创建一支能够识别癌症相关抗原的T细胞大军。这种新的纳米颗粒输送系统可能会改善传染病疫苗的接种方式,并且也可能为治疗癌症开辟一条新途径。”该研究发表在《PNAS》杂志上。...PC版:https://www.cnbeta.com.tw/articles/soft/1368037.htm手机版:https://m.cnbeta.com.tw/view/1368037.htm

封面图片

科学家头颈部癌症免疫疗法的潜在新目标

科学家头颈部癌症免疫疗法的潜在新目标一张彩色扫描电子显微照片描绘了一个单一的人类口腔鳞癌细胞,这是最常见的头颈癌形式最近发表在PNASNexus上的这一结果意味着癌症免疫疗法可能有了新的目标和策略,迄今为止,这些疗法对某些头颈部癌症产生了不一致的结果。端粒酶逆转录酶(TERT)是一种在大约85%的肿瘤细胞中大量产生的抗原。抗原是一种毒素或其他物质,能激起对该物质的免疫反应。癌症患者中的TERT尤其如此。但是TERT的表达对肿瘤内适应性免疫的调控的影响并不了解。在这项新研究中,共同资深研究作者、加州大学圣地亚哥分校医学院教授、加州大学圣地亚哥分校Moores癌症中心免疫学实验室主任MaurizioZanetti博士及其同事使用了癌症基因组图谱的RNA测序数据。共同第一作者、加州大学圣地亚哥分校医学院副教授HannahCarter博士说:"我们的数据是通过对TheCancerGenomeAtlas这一宝贵的公共肿瘤测序数据集进行有针对性的计算再分析而出现的,该数据集由免疫学的核心原则指导。"具体来说,Zanetti、Carter和他们的合作者研究了11种实体瘤类型,以调查TERT表达与渗入肿瘤微环境的B和T细胞之间的潜在相互作用。B细胞是免疫反应细胞,对抗原(从细菌和病毒到毒素)产生抗体。T细胞是免疫细胞,针对并摧毁体内已被抗原占据或变成癌症的细胞。但是B细胞也向T细胞提出抗原,在这个过程中触发它们的激活。研究人员在四种癌症类型中发现了TERT表达与B细胞和T细胞之间的正相关关系,其中头颈部鳞状细胞癌的关联性最强,这种疾病发生在口腔、鼻腔和喉咙的粘膜上。他们发现,发现这种关联的病人与更有利的临床结果有关。这些发现表明B和T淋巴细胞在肿瘤内从新形成淋巴结构,而TERT是一种潜在的连接抗原。头颈部鳞状细胞癌(HNSCC)是第六种最常见的恶性肿瘤。它占所有头颈部癌症的90%。该病的主要原因是长期吸烟、饮酒和感染高风险类型的人类乳头瘤病毒。在美国,每年大约有66,000个新的头颈部癌症诊断,15000人死亡。HNSCC的死亡率很高。大约50至60%的病人在诊断后一年内死亡;总的五年生存率(诊断后五年内活着的病人)仅为50%。对无法通过手术切除的HNSCC肿瘤的治疗包括化疗、放疗和免疫检查点治疗,尽管只有一小部分患者从免疫检查点治疗中受益。Zanetti说,新的发现指出了治疗HNSCC的潜在新方法,特别是对结果较差的高风险患者。"癌症免疫疗法是指通过利用患者自身的免疫系统来对抗恶性肿瘤来治疗患者。"Zanetti说:"理想情况下,我们应该加强患者体内已经存在的机制。""目前的重点是新抗原(当肿瘤DNA发生某些突变时在癌细胞上形成的蛋白质)和免疫检查点抑制剂(如单克隆抗体等药物),这些药物针对并阻止有助于保护癌细胞免受T细胞攻击的行动。但这些疗法只是部分有效,而且只对某些类型的癌症有效。我们的研究结果提供了证据,证明高的TERT表达是在肿瘤内产生高水平的B和T细胞的关键信号,这表明了开发肿瘤内免疫疗法以加强已经存在的抗肿瘤免疫的新途径"。...PC版:https://www.cnbeta.com.tw/articles/soft/1356455.htm手机版:https://m.cnbeta.com.tw/view/1356455.htm

封面图片

联合研究揭示灭活与mRNA新冠疫苗免疫反应的关键差异

联合研究揭示灭活与mRNA新冠疫苗免疫反应的关键差异该研究的高级合著者AnthonyTanotoTan博士说:"灭活SARS-CoV-2疫苗在亚洲被广泛使用,但由于其诱导的抗体反应比其他类型的疫苗低,所以通常被认为是效果不佳的。这意味着它们在预防感染方面可能没有那么好,但几项研究表明,它们同样能够阻止严重的COVID-19的发展。"Tan是杜克大学新发传染病项目的高级研究员。在美国,有四种COVID-19疫苗被FDA批准或授权,分别是辉瑞-生物技术、Moderna、Novavax和强生(J&J/Janssen)。辉瑞-生物技术公司和Moderna生产的是信使RNA(mRNA)疫苗,Novavax是一种蛋白质亚单位疫苗,J&J/Janssen是一种载体疫苗。在研究中,科学家团队比较了接受SARS-CoV-2灭活疫苗和穗状mRNA疫苗的人的血样中的T细胞免疫反应。mRNA疫苗只能诱导针对SARS-CoV-2的尖峰蛋白的T细胞,而尖峰蛋白在Omicron变体中含有许多突变,但灭活疫苗不仅刺激了针对病毒尖峰蛋白的广泛T细胞反应,而且还刺激了Omicron中突变少得多的膜和核蛋白。"这种膜、核蛋白和尖峰特异性T细胞反应的组合在数量上与mRNA疫苗诱导的唯一尖峰T细胞反应相当。"该研究的第一作者、杜克大学综合生物学和医学博士方向的二年级学生JoeyLimMingEr女士说:"它还能有效地容忍SARS-CoV-2-Omicron系列的突变。"然而,与mRNA疫苗不同的是,灭活病毒疫苗似乎并没有触发以杀死病毒感染细胞的能力而闻名的细胞毒性CD8T细胞。它们主要刺激了一种叫做CD4T辅助细胞的T细胞。当这些T细胞识别病毒抗原时,它们会释放化学物质,称为细胞因子,帮助激活其他类型的免疫细胞,因此它们被称为T细胞。该研究的高级作者、杜克大学EID项目的安东尼奥·贝托莱蒂教授说。"Omicron变体可以有效地躲避抗体中和,使对疫苗接种效果的评估从预防感染转向改善疾病。与抗体相比,T细胞可能在其中发挥更重要的作用,因为它们有能力针对病毒感染的细胞。""由于SARS-CoV-2灭活疫苗可以产生针对其他病毒蛋白的T细胞反应,与目前其他疫苗的尖峰靶向策略相比,这种更加异质的反应可能是有益的。然而,需要更大规模的研究来澄清这些T细胞反应在SARS-CoV-2发病机制中的影响,以便更好地设计疫苗,控制Omicron或未来变种感染后的重症COVID-19"。为了更深入地挖掘不同T细胞反应的影响,科学家们呼吁招募更多的参与者进行进一步的研究,以比较灭活病毒疫苗诱导的多蛋白CD4T细胞反应与mRNA疫苗诱导的单穗蛋白协调CD4和CD8T细胞反应改善COVID-19疾病严重程度的能力。...PC版:https://www.cnbeta.com.tw/articles/soft/1333297.htm手机版:https://m.cnbeta.com.tw/view/1333297.htm

封面图片

癌症和心脏病疫苗有望2030年准备就绪

癌症和心脏病疫苗有望2030年准备就绪他相信,莫德纳公司将能在短短5年内为“所有类型的疾病领域”提供mRNA疗法,它将拯救数十万人甚至数百万人的生命。据报道,该公司曾推出mRNA新冠疫苗,目前正在开发针对不同肿瘤的癌症疫苗。伯顿将该疗法的成功部分归功于新冠疫情,称大流行加速了这项技术的发展。mRNA分子指示细胞制造蛋白质。通过注射一种合成形式的mRNA,细胞可造出科研人员希望免疫系统攻击的蛋白质。基于mRNA的癌症疫苗将提醒免疫系统注意已经在患者体内生长的癌细胞,这样疫苗就可攻击并摧毁它,而不会破坏健康细胞。该原理涉及识别癌细胞表面的蛋白质片段(健康人体中并不具有这些蛋白质片段,而它们最有可能引发免疫反应),然后创造出一种mRNA疫苗,指导身体合成这种蛋白质片段,进而产生抗体。伯顿表示,莫德纳公司在所有这些领域进行的研究均显示出广泛前景。...PC版:https://www.cnbeta.com.tw/articles/soft/1354023.htm手机版:https://m.cnbeta.com.tw/view/1354023.htm

🔍 发送关键词来寻找群组、频道或视频。

启动SOSO机器人