科学家已经解密了DNA的 "机械密码" 有望扭转癌症发展过程

科学家已经解密了DNA的"机械密码"有望扭转癌症发展过程DNA的机械密码指的是DNA的物理特性,这些特性对其作为遗传材料的功能很重要。这些特性包括双螺旋结构、碱基配对的稳定性、以及分子的弹性和灵活性。这些特性使DNA能够存储和传输遗传信息,它们受到温度、湿度和pH值等各种因素的影响。此外,研究人员发现,DNA的机械代码可以被"甲基化"所改变,这是一种已知的化学修饰,DNA碱基在生物体发育的不同阶段通常会受到这种修饰。不正常的甲基化已经与几种癌症有关。甲基化改变机械代码的发现,提出了一种可能性,即生物发展程序或诸如癌症等疾病,可能通过改变通过机械代码编码的信息来实现其对细胞的部分影响。这项研究是与来自美国约翰霍普金斯大学、西班牙巴塞罗那科技学院和西班牙巴塞罗那大学的同事一起进行的。它已经发表在《自然-结构与分子生物学》杂志上。该研究的主要作者,杜伦大学的AakashBasu博士说。"DNA是一本书,包含细胞生存所需的指令。但这是一本非常特殊的书,你翻开一页,修复一页的撕裂,或折叠一页的能力,都取决于写在这一页上的文字。这是因为在DNA这本书中,这些字在某种程度上也控制着纸张的机械性能"。他们指出,众所周知,阅读、复制、包装和修复储存在沿着DNA的碱基序列(As、Ts、Gs和Cs)中的遗传信息,经常涉及需要DNA局部机械变形的过程。研究人员提供的证据表明,在从哺乳动物到细菌的各种生物体中,自然界和进化已经利用机械密码来局部控制DNA的变形性,从而反过来控制需要DNA机械变形的关键生物过程。研究人员希望这一知识能够指导未来的治疗和生物工程发展。...PC版:https://www.cnbeta.com.tw/articles/soft/1338007.htm手机版:https://m.cnbeta.com.tw/view/1338007.htm

相关推荐

封面图片

解码耳聋: 南加州大学科学家研究听力再生

解码耳聋:南加州大学科学家研究听力再生小鼠内耳中成排的感觉听觉细胞(绿色)和支持细胞(红色)。图片来源:JohnDucNguyen和JuanLlamas/Segil实验室"在内耳的非感官支持细胞中,转化为感官细胞所需的关键基因通过一种被称为'表观遗传沉默'的过程被关闭。"其中一篇论文的第一作者JohnDucNguyen说:"通过研究基因是如何被关闭的,我们开始了解如何重新开启基因以再生听力。"Nguyen现在在生物技术公司基因泰克(Genentech)工作,他在南加州大学干细胞实验室获得了博士学位,该实验室的负责人是尼尔-赛吉尔(NeilSegil),他于2022年因胰腺癌去世。第二篇论文探讨了内耳何时以及如何首先获得形成感觉听觉细胞的能力,并描述了两个可能有助于成人听力再生的特定基因。论文的第一作者艾米丽-西子-王(EmilyXiziWang)说:"我们重点研究了Sox4和Sox11基因,因为我们发现它们是在发育过程中形成感觉听觉细胞所必需的。"两篇论文的共同作者、南加州大学凯克医学院干细胞生物学和再生医学系临时主席盖奇-克鲁姆普(GageCrump)补充说:"这两篇论文不仅是伟大的科学,也是尼尔-塞吉尔作为下一代干细胞研究人员的杰出导师所留下的永恒遗产的明显例证。"沉默不是金基因被关闭或"沉默"的一种重要方式涉及一种叫做甲基的化合物,这种化合物与DNA结合,使DNA无法访问,这正是Nguyen的论文所关注的重点。当指示细胞成为感官听觉细胞的DNA发生甲基化时,细胞就无法获取这些指令。通过对从小鼠内耳中提取的非感官支持细胞进行实验,阮和他的同事们证实,DNA甲基化会使促进转化为感官听觉细胞的基因沉默,其中包括众所周知的内耳发育主调节基因Atoh1。一种名为TET的酶可以去除DNA中的甲基,从而逆转基因沉默,恢复支持细胞转化为感觉毛细胞的能力。因此,当科学家们阻断TET的活性时,支持细胞保留了DNA甲基化,因此无法在培养皿中转化为感觉毛细胞。耐人寻味的是,在另一项实验中,研究人员测试了慢性耳聋小鼠支持细胞的基因沉默程度。他们发现,基因沉默被部分逆转,这意味着支持细胞有能力对信号做出反应,转化为感觉听觉细胞。这一发现具有重要意义:感觉听觉细胞本身的丧失可能会部分逆转慢性耳聋患者支持细胞中的基因沉默。如果是这样的话,慢性耳聋患者的支持细胞可能已经具备了转化为感觉听觉细胞的自然条件。赛吉尔的长期合作者、贝勒医学院的安德鲁-格罗夫斯(AndrewK.Groves)是这篇论文的通讯作者。在第二篇论文中,王和她的同事探讨了内耳祖细胞何时以及如何获得形成感觉听觉细胞的能力。科学家们确定了祖细胞获得这种能力的时间:小鼠胚胎发育的第12天到13.5天之间。在这个窗口期,祖细胞获得了对来自主调节基因Atoh1的信号做出反应的能力,而Atoh1会在发育后期触发感觉听觉细胞的形成。促使祖细胞对Atoh1做出反应的是另外两个改变这些细胞状态的基因Sox4和Sox11。在缺乏Sox4和Sox11的胚胎小鼠中,内耳的祖细胞无法发育成感觉听觉细胞。具体来说,Sox4和Sox11的缺失使细胞的DNA无法访问--这种效应类似于DNA甲基化。由于DNA不能被利用,祖细胞无法对来自Atoh1的信号做出反应。另一方面,高水平的Sox4和Sox11活性刺激小鼠祖细胞和支持细胞在培养皿中形成感觉听觉细胞。更有希望的是,在内耳感觉细胞受损的小鼠中,高水平的Sox4和Sox11活性提高了前庭支持细胞转化为感觉受体细胞的比例--从6%提高到40%。"我们很高兴能继续探索内耳细胞在发育过程中获得分化为感觉细胞能力的机制,以及如何利用这些机制促进成熟内耳感觉听觉细胞的恢复,"论文通讯作者克休莎-格内德娃(KseniaGnedeva)说,她在塞吉尔实验室完成了博士后培训,现在是南加州大学蒂娜和里克-卡鲁索耳鼻咽喉-头颈外科以及干细胞生物学和再生医学系的助理教授。...PC版:https://www.cnbeta.com.tw/articles/soft/1380629.htm手机版:https://m.cnbeta.com.tw/view/1380629.htm

封面图片

研究发现DNA甲基化在阿尔茨海默病中起关键作用

研究发现DNA甲基化在阿尔茨海默病中起关键作用该研究发现,DNA甲基化对与AD相关的基因和蛋白质共表达网络有深远影响,并可能导致发现新的神经病理过程和分子机制,以开发该疾病的新疗法。该研究使用了一种新的分析方法来量化DNA甲基化对基因和蛋白质表达的影响,并使用了西奈山脑库的一个大型死后对照组、轻度认知障碍(MCI)和AD大脑组。研究人员对海马旁回的全基因组甲基化变化进行了分析,海马旁回是大脑中涉及各种功能的区域,包括记忆处理,并调查了这些变化对mRNA和蛋白质共同表达网络的影响。他们发现与正常对照组相比,AD有270个不同的甲基化区域(DMRs),并使用一个独立的队列(宗教秩序研究和记忆评估项目,ROSMAP)验证了他们的关键发现。"我们的研究代表了整合阿尔茨海默病多组学高通量分析的首次全面努力,"资深作者、WillardT.C.Johnson神经遗传学研究教授、西奈山疾病转化模型中心主任张斌博士说。"它为未来在多尺度网络层面的数据整合提供了一个框架,并可能导致发现阿尔茨海默病的新的药物发现目标"。这项研究的结果为调查DNA甲基化和基因/蛋白质表达之间的关系提供了一种新的方法,并强调了表观遗传机制在人类疾病如AD中的重要性。研究人员计划扩展他们的方法,以研究单细胞水平的甲基化变异和对多尺度网络的影响,这可以提供对单个细胞类型的DNA甲基化概况的新见解。...PC版:https://www.cnbeta.com.tw/articles/soft/1345841.htm手机版:https://m.cnbeta.com.tw/view/1345841.htm

封面图片

科学家们找到读写与检索存储在DNA中的数字数据的方法

科学家们找到读写与检索存储在DNA中的数字数据的方法DNA早已经成了在研发生物计算机的过程当中实现大规模数据存储的最佳方法。D方法是将二进制(0或1)值转化为四个不同的DNA"字母"(A、T、C或G)之一。但是,人们如何在DNA编码的数据数据库中搜索,以发现某个数据?又如何能够使用DNA编码的数据执行计算,而不首先将其转化为电子形式?这些都是来自LIMMS(CNRS/东京大学)和Gulliver(CNRS/ESPI)实验室的研究小组试图回答的问题。他们正在试验一种新的方法,使用酶和人工神经元和神经网络对DNA数据进行直接操作。具体来说,研究人员利用三种酶的反应来设计化学"神经元",重现真正的神经元所表现出的网络结构和复杂计算能力。他们的化学神经元可以用DNA链上的数据执行计算,并将结果表达为荧光信号。LIMMS和Gulliver团队还通过组装两层人工神经元进行创新,以细化计算。通过反应的微流控小型化进一步提高了精度,允许数以万计的反应快速发生。作为法国生物化学家和日本微流控工程师之间十年合作的成果,这些突破最终可能允许对某些疾病进行更好的筛选,以及对巨大的DNA编码数据库进行操作。当远离水、空气和光线时,DNA可以保存几十万年,且不需要任何能量输入。一个直径几厘米的胶囊存储的DNA可以容纳多达500TB的数字数据。到2025年,人类产生的数字数据总量预计将达到175ZB。由于目前的存储介质相对笨重、脆弱和能源密集,DNA可能提供一个可行的替代方案,也就是能够在一个鞋盒的空间内容纳所有现有数据。促进DNA存储技术的发展将是PEPRMoleculArxiv的目标,这是法国国家科学研究中心去年5月提供的一项优先研究计划。...PC版:https://www.cnbeta.com.tw/articles/soft/1333691.htm手机版:https://m.cnbeta.com.tw/view/1333691.htm

封面图片

科学家解密古老谷物Einkorn的DNA 推出更有韧性、更有营养的面包品种

科学家解密古老谷物Einkorn的DNA推出更有韧性、更有营养的面包品种这个长达52亿个字母的序列为了解不同小麦物种的进化起源提供了一个窗口。它可以帮助农民和作物育种者培育出抗病性更强、产量更高、耐寒性更好的面包小麦品种。利用基因多样性促进未来育种该研究的第一作者之一、前卡塔赫纳科技大学博士生哈宁-艾哈迈德(HaninAhmed)说:"通过了解小麦的遗传多样性和进化历史,研究人员现在可以利用其潜力开展未来的育种工作,并开发出更有韧性、更有营养的小麦品种。"最原始的二倍体栽培种一粒小麦是世界上最古老的驯化谷物之一,可追溯到一万多年前的中东肥沃地区,那里是一粒小麦种植的发源地。这种谷物被称为Triticummonococcum,至今仍被人们食用,其独特的风味和众多的营养价值深受人们喜爱。然而,千百年来,随着面包小麦的流行,它在全球粮食生产中的重要性逐渐下降。展示驯化小麦(左)和野生小麦(右)麦穗的Triticummonococcum绘画。70x50厘米,纸面水彩。图片来源:2023年RobynPalescandolo为KAUST的沙漠农业中心创作面包小麦品种一般产量较高,这使它们在大规模商业农业中更具经济可行性。然而,与野生小麦相比,现代面包小麦的遗传多样性有所降低,许多育种家现在担心的是,面对气候变化和新的疾病威胁,现有作物将如何生存。回到Einkorn,由于这种古老的谷物保持着较大的基因库,因此它可能蕴藏着开发面包小麦所需的基因秘密,这种面包小麦可以继续养活世界上不断增长的人口。为了揭开这些秘密,由卡塔赫纳科技大学的西蒙-克拉廷格和杰西-波兰领导的研究小组综合运用DNA测序技术,为野生和驯化的裸麦品种创建了高质量的基因组组装。研究人员以前认为,小麦的进化是一个稳定的过程,不同小麦物种之间的混合很有限。但Krattinger说:"我们的基因组分析现在显示,小麦的历史要复杂得多,涉及不同小麦品种之间的大量混合和基因流动。包括Einkorn在内,这种小麦很可能生长在靠近其他小麦品种的地方,导致这两种密切相关的小麦品种之间的DNA混合,这种情况至今仍然很明显。"正如人类基因组中含有尼安德特人表亲的序列一样,现代面包小麦基因组中也遍布着小麦DNA的残余。Krattinger指出,事实上,过去引进的一粒小麦基因可能在帮助面包小麦适应不断变化的气候条件方面发挥了作用。如果历史能够说明问题,那么未来也会如此,尤其是在现代分子指导育种技术的帮助下。实验室的资源将有助于把小麦中的有益基因精确地转移到面包小麦中。编译来源:ScitechDaily...PC版:https://www.cnbeta.com.tw/articles/soft/1418835.htm手机版:https://m.cnbeta.com.tw/view/1418835.htm

封面图片

中国科学家提出DNA数字存储纠错新算法

中国科学家提出DNA数字存储纠错新算法DNA数字存储是一种使用生命密码DNA存储信息的新方法,以其存储密度高、存储寿命长且维护成本低的优势,被视为高潜力的新兴存储技术。然而,DNA数字存储过程中的合成错误、保存错误以及测序错误,给数据的准确恢复带来了挑战。纠错算法的示意概览。中国农业科学院深圳农业基因组研究所供图为解决这一问题,研究人员基于DNA数字存储的错误偏好性,构建出了错误预测模型,在此基础上首次融入纠错码解码技术,开发出可将纠错数量提高至硬判决(物理学名词,译码器的输入只能是0或者1)2倍的软判决(物理学名词,不直接判决输出是1还是0,只给出“推测”)译码软件Derrick,预计可达到千亿亿亿字节规模的无损存储容量。...PC版:https://www.cnbeta.com.tw/articles/soft/1384773.htm手机版:https://m.cnbeta.com.tw/view/1384773.htm

封面图片

科学家揭示蛋白质如何驱动癌症生长

科学家揭示蛋白质如何驱动癌症生长在圣路易斯华盛顿大学医学院、麻省理工学院和哈佛大学布罗德研究所、杨百翰大学以及世界各地其他机构的领导下,临床蛋白质组肿瘤分析联合会对驱动癌症的关键蛋白质及其调控方式进行了研究。研究结果于8月14日发表在《细胞》(Cell)和《癌细胞》(CancerCell)杂志上的一组论文中。临床肿瘤蛋白质组学分析联合会由美国国立卫生研究院(NIH)国家癌症研究所资助。资深作者、华盛顿大学戴维-英格利希-史密斯医学特聘教授丁力博士说:"在我们开发更好的癌症疗法的努力中,这种对驱动肿瘤生长的蛋白质的新分析是继癌症基因组测序之后的下一步。通过过去的癌细胞基因组测序工作,我们确定了近300个驱动癌症的基因。现在,我们正在研究这些癌基因所启动的机器的细节--实际导致细胞分裂失控的蛋白质及其调控网络。我们希望这项分析能成为癌症研究人员开发多种肿瘤类型新疗法的重要资源。"研究人员分析了涉及10种不同类型癌症的约1万个蛋白质,他们强调了大量数据在这类分析中的重要性;其中许多重要的癌症驱动蛋白在任何一种癌症中都很罕见,如果对肿瘤类型进行单独研究,就不可能发现这些蛋白。这项分析包括两种不同类型的肺癌以及结直肠癌、卵巢癌、肾癌、头颈癌、子宫癌、胰腺癌、乳腺癌和脑癌。丁力也是巴恩斯犹太医院和华盛顿大学医学院西特曼癌症中心的研究成员。他介绍谁哦"当我们对多种癌症类型进行综合分析时,我们就能提高检测导致癌症生长和扩散的重要蛋白质的能力。综合分析还能让我们找出驱动不同类型癌症的主要共同机制。"除了单个蛋白质的功能外,这些数据还能让研究人员了解蛋白质之间是如何相互作用来促进癌症生长的。如果两种蛋白质的水平相互关联--例如,当其中一种蛋白质的水平较高时,另一种蛋白质的水平也总是较高--这就表明这两种蛋白质是作为伙伴作用的。破坏这种相互作用可能是阻止肿瘤生长的一种有效方法。这些研究(包括丁和布罗德研究所的加德-格茨博士共同领导的一项研究)还揭示了通过化学改变蛋白质以改变其功能的不同方法。研究人员记录了这种化学变化--称为乙酰化和磷酸化的过程--如何改变DNA修复、改变免疫反应、改变DNA的折叠和包装方式,以及其他可能在癌症发生过程中发挥作用的重要分子变化。这项研究还揭示了免疫疗法的有效性。检查点抑制剂等免疫疗法通常对突变较多的癌症最有效,但即便如此,它们也并非对所有患者都有效。研究人员发现,大量突变并不总是导致异常蛋白质的大量存在,而异常蛋白质正是免疫系统攻击肿瘤的目标。丁说:"对某些癌症来说,即使突变有可能产生肿瘤抗原,但如果没有异常蛋白表达或表达很少,这种突变就可能不是治疗的靶点。这可以解释为什么有些病人对免疫疗法没有反应,即使他们似乎应该对免疫疗法有反应。因此,我们的蛋白质组学调查涵盖了肿瘤抗原的表达谱,对于设计针对选定突变的新免疫疗法特别有用。"在另一项研究中,丁的团队确定了DNA甲基化模式,这是另一种能影响基因表达方式的化学变化。这种模式可能是癌症的关键驱动因素。在一项重要发现中,研究小组确定了在某些肿瘤类型中抑制免疫系统的分子开关。这组四项研究的最后一篇论文向更广泛的研究界提供了联盟使用的数据和分析资源。她说:"总的来说,这种对多种癌症类型进行的彻底蛋白质组学和化学修饰分析--与我们长期积累的癌症基因组学知识相结合--提供了另一层信息,我们希望这些信息能帮助解答癌症是如何生长并设法躲避我们的许多最佳治疗方法的许多持续存在的问题。"...PC版:https://www.cnbeta.com.tw/articles/soft/1377313.htm手机版:https://m.cnbeta.com.tw/view/1377313.htm

🔍 发送关键词来寻找群组、频道或视频。

启动SOSO机器人