大脑刺激可以缓解症状 帮助治疗阿尔茨海默病

大脑刺激可以缓解症状帮助治疗阿尔茨海默病在阿尔茨海默病患者中,当刺激穹窿(绿色)和终纹床核(蓝色)之间的区域时,观察到最大的积极效果。图中还显示了两个大脑结构--丘脑(粉色)和海马(黄色),以及刺激电极。深度脑刺激(DBS)是一种治疗技术,在德国已经被授权用于治疗神经系统运动障碍,如帕金森病和肌张力障碍,以及强迫症等神经精神疾病。在DBS中,薄薄的电极被植入病人的大脑,向特定区域提供持续、温和的电脉冲。电极永久性地留在大脑中,并通过皮肤下的电线与植入胸部的类似起搏器的装置相连。该设备用于调整电刺激的强度和频率。安德烈亚斯-霍恩(AndreasHorn)教授说:"尽管DBS作为帕金森病的既定治疗方法已有20年之久,而且费用由医疗保险机构承担,但它仍然不是一种非常知名的治疗方法,"他是查理特校区神经学和实验神经学系以及美国波士顿哈佛医学院附属布莱根妇女医院和麻省总医院探索基于网络的大脑刺激的实验室负责人。他说:"DBS对帕金森病患者的效果非常好,能显著改善他们的生活质量"。由于阿尔茨海默氏症也是一种神经退行性疾病,DBS似乎也可能用于治疗这种疾病。但只有在知道需要刺激的精确脑区时,才有可能进行安全、有效的治疗。研究人员与包括加拿大多伦多大学在内的多个合作伙伴密切合作开展了当前的研究,其出发点是在加拿大的一项研究中进行的随机观察。"在一位正在接受肥胖症治疗的患者身上,深层脑刺激引起了闪回--他们的童年和青少年时期的突然记忆,"来自夏里特校区神经学和实验神经学系的安娜-索菲亚-里奥斯博士说,他是该研究的主要作者。"这使来自加拿大的研究人员怀疑,刺激位于穹窿的这一大脑区域可能也适合于治疗阿尔茨海默氏症"。为了进一步研究这个问题,作为多中心研究的一部分,在七个国际中心工作的研究人员在患有轻度阿尔茨海默病的参与者的穹窿部同一区域植入了电极。"不幸的是,大多数病人的症状没有改善。但有少数参与者从治疗中获益良多,"里奥斯博士说。"在本研究中,我们想找到这些差异的根本原因,因此我们比较了每个参与者的电极的确切位置。"霍恩教授的研究小组擅长分析大脑的高分辨率磁共振图像,并将这些图像与计算机模型相结合,精确地确定DBS的最佳位置。主要的挑战之一是每个大脑都是不同的--而这对于准确放置电极来说真的很重要。当电极的位置甚至偏离目标几毫米时,都可能导致病人无法受益。这就是大多数研究参与者所发生的情况。但霍恩教授和他的团队能够使用成像数据来确定从该手术中受益的患者的电极的确切位置。"最佳的刺激部位似乎是两个纤维束的交叉点--穹窿和终端纹--它们连接着大脑深处的区域。这两种结构都与记忆功能有关,"霍恩教授说。在DBS能够被批准并用于治疗阿尔茨海默病之前,还需要进一步的临床研究。目前的结果是这个过程中的一个重要的下一步。如果汇总的数据使得在阿尔茨海默氏症患者试用DBS的神经外科研究中更精确地放置电极成为可能,那将是非常好的。医护人员迫切需要一种有效的疗法来缓解这种疾病的症状--而DBS是非常有希望的。展望未来,霍恩实验室将进行进一步的研究,以调查和确定大脑中可能对治疗痴呆症有用的其他神经网络。他们的工作将包括检查大脑的病变区域,并确定DBS和其他神经刺激方法的目标区域。...PC版:https://www.cnbeta.com.tw/articles/soft/1340693.htm手机版:https://m.cnbeta.com.tw/view/1340693.htm

相关推荐

封面图片

光疗法可帮助大脑清除有毒的阿尔茨海默氏症蛋白质

光疗法可帮助大脑清除有毒的阿尔茨海默氏症蛋白质尽管研究人员做出了不懈的努力,但仍无法开发出一种安全有效的药物治疗阿尔茨海默病(AD)的方法,这就意味着要转向非药物方法。一项新的研究证明了光疗(或称光疗)在治疗阿尔茨海默病方面的治疗潜力,研究人员在小鼠身上取得了可喜的成果,希望这些成果对人类也同样有效。在这项研究中,研究人员使用了光生物调节疗法(PBM),这是一种非药物疗法,利用红光和近红外线来刺激人体自愈。有证据表明,PBM除了能逆转氧化应激和炎症外,还能促进大脑的新陈代谢和微循环。最近的研究发现,PBM可以刺激大脑的淋巴系统,清除废物和毒素。脑膜是覆盖和保护大脑和脊髓的薄膜,在脑膜上有一个淋巴管系统。这些脑膜淋巴管(或称MLV)已被证明能清除长期以来与阿尔茨海默氏症有关的β-淀粉样蛋白。人们认为,这种天然生成的蛋白质含量异常,会在神经元之间聚集形成斑块,破坏细胞功能。由于大脑的淋巴系统在睡眠时被激活,研究人员测试了PBM在清醒和非快速眼动(深度)睡眠时的效果。他们用激光破坏了小鼠的MLV,然后将β-淀粉样蛋白注入小鼠的海马体(大脑中与记忆和学习有关的区域)。使用发光二极管对小鼠进行为期七天的PBM治疗,每天一次。研究人员通过测量海马体中β-淀粉样蛋白的水平发现,无论是在清醒状态下还是在睡眠状态下使用PBM,海马体中β-淀粉样蛋白的水平都较低,但在睡眠状态下使用PBM,β-淀粉样蛋白的下降幅度更大。他们的结论是,与清醒状态相比,睡眠状态下的PBM能更有效地刺激海马体中的β-淀粉样蛋白排出体外。研究人员还观察到,尽管MLV受到破坏,抑制了它们清除β-淀粉样蛋白的能力,但经过治疗后,这种能力又得到了恢复,而且在睡眠时使用PBM比在清醒时使用更有效。研究人员说:"在我们的研究结果中,我们发现PBM能在MLV损伤后促进淋巴功能的恢复,如果在深度睡眠时使用PBM比在清醒时使用更有效。"他们表示,这种非药物、非侵入性的治疗方法可用于注意力缺失症患者和其他涉及大脑淋巴系统的疾病。由于药物治疗AD未能显示出有效性或安全性,PBM作为一种非侵入性的安全方法,在临床实践中很有希望用于治疗伴有淋巴系统疾病的脑部疾病,如AD、帕金森病、胶质瘤、脑外伤、颅内出血等。该研究发表在《光电子学前沿》杂志上。...PC版:https://www.cnbeta.com.tw/articles/soft/1386179.htm手机版:https://m.cnbeta.com.tw/view/1386179.htm

封面图片

MIT研究人员发现40赫兹的振动可减轻阿尔茨海默病的症状

MIT研究人员发现40赫兹的振动可减轻阿尔茨海默病的症状有证据表明,对40赫兹伽马频率的大脑节奏进行非侵入性感官刺激可以减少阿尔茨海默病的病理和症状,多个研究小组已经在小鼠和人类身上证明了这一点,现在又扩展到了触觉刺激。麻省理工学院科学家的一项新研究显示,阿尔茨海默氏症模型小鼠每天接触40赫兹振动一小时,持续数周,与未接受治疗的对照组相比,大脑健康和运动功能得到改善。麻省理工学院的研究小组并不是第一个表明伽马频率的触觉刺激可以影响大脑活动和改善运动功能的研究,但他们是第一个表明这种刺激还可以降低阿尔茨海默氏症标志性蛋白磷酸化tau的水平,使神经元不至于死亡或失去突触回路连接,并减少神经DNA的损伤。该研究的通讯作者、麻省理工学院Picower学习与记忆研究所和老龄化大脑计划主任、脑与认知科学系(BCS)Picower教授蔡丽慧说:"这项工作展示了我们可以用来增加大脑中伽马功率的第三种感官模式。我们非常高兴地看到40赫兹的触觉刺激有利于运动能力,这一点在其他方式中还没有显示出来。观察触觉刺激是否能使运动功能受损的人类受试者受益,这将是非常有趣的。"论文中一个放大的细节显示,在接受40赫兹触觉刺激的TauP301S模型小鼠中,初级体感皮质神经元的磷酸化tau(品红色)减少了(右)。左边是未经处理的对照组的图像。资料来源:TsaiLab/MITPicowerInstituteHo-JunSuk、NicoleBuie、GuojieXu和AritBanerjee是《老龄化神经科学前沿》中这项研究的主要作者,麻省理工学院Y.EvaTan神经技术教授EdBoyden是该论文的共同第一作者。博伊登是皮克沃研究所的附属成员,也被任命为BCS以及生物工程系和媒体艺术与科学系、麦戈文大脑研究所和K.LisaYangCenerforBionics的成员。在2016年开始的一系列论文中,由Tsai实验室领导的合作已经证明,光的闪烁和/或40赫兹的声音刺激(这项技术被称为GENUS,即使用感官刺激的伽马调控),可以降低淀粉样蛋白-β和tau蛋白的水平,防止神经元死亡,保存突触,甚至在各种阿尔茨海默病小鼠模型中维持学习和记忆。最近,在试点临床研究中,该团队表明,40赫兹的光和声刺激是安全的,并成功地增加了大脑活动和连接性,并似乎在一小批患有早期阿尔茨海默病的人类志愿者中产生了明显的临床效益。其他小组已经复制并证实了40赫兹感官刺激的健康益处,麻省理工学院的一家衍生公司CognitoTherapeutics已经启动了光和声刺激作为阿尔茨海默氏症治疗的第三阶段临床试验。这项新研究测试了全身40赫兹触觉刺激是否在两种常用的阿尔茨海默氏症神经变性小鼠模型中产生了有意义的益处,即TauP301S小鼠和CK-p25小鼠,前者再现了该疾病的tau病理学,后者再现了人类疾病中的突触损失和DNA损伤。研究小组重点分析了大脑的两个区域:处理触觉的初级体感皮层(SSp),以及大脑产生身体运动指令的初级运动皮层(MOp)。为了产生振动刺激,研究人员将小鼠笼子放在播放40赫兹声音的扬声器上,使笼子振动。未受刺激的对照组小鼠被关在同一房间的笼子里,这样所有的小鼠都能听到相同的40赫兹声音。因此,在受刺激小鼠和对照小鼠之间测得的差异是通过增加触觉刺激来实现的。首先,研究人员证实,40赫兹的振动使健康(即非阿尔茨海默氏症)小鼠的大脑神经活动发生了变化。通过c-fos蛋白的表达来衡量,SSp的活动增加了2倍,MOp的活动增加了3倍多,后者的增加具有统计学意义。研究人员知道40赫兹的触觉刺激可以增加神经活动后,他们评估了这两种小鼠模型对疾病的影响。为了确保男女都有代表,研究小组使用了雄性P301S小鼠和雌性CK-p25小鼠。与未受刺激的对照组相比,受刺激三周的P301S小鼠在两个脑区都显示出神经元的显著保留。受刺激的小鼠还显示出SSp中tau的两项指标明显减少,并在MOp中表现出类似的趋势。CK-p25小鼠接受了六周的振动刺激。与未受振动的对照组小鼠相比,这些小鼠在两个脑区都显示出较高的突触蛋白标记物水平。他们还显示出DNA损伤水平的降低。最后,研究小组评估了接触振动的小鼠与未接触的小鼠的运动能力。他们发现,两种小鼠模型都能够在一个旋转杆上停留的时间明显更长。P301S小鼠挂在铁丝网上的时间也明显长于对照组小鼠,而CK-p25小鼠显示了一个积极的趋势,尽管并不显著。作者总结说:"目前的研究以及我们以前使用视觉或听觉GENUS的研究表明,有可能使用非侵入性的感官刺激作为一种新的治疗策略,以改善神经退行性疾病的病理状况并提高行为表现,"。...PC版:https://www.cnbeta.com.tw/articles/soft/1360809.htm手机版:https://m.cnbeta.com.tw/view/1360809.htm

封面图片

创新型新疫苗可能是治疗和预防阿尔茨海默病的关键

创新型新疫苗可能是治疗和预防阿尔茨海默病的关键此前,日本东京顺天堂大学医学研究生院的研究人员开发了一种疫苗,用于消除表达衰老相关糖蛋白(SAGP)的衰老细胞--这种衰老溶解疫苗可改善各种与年龄相关的疾病,包括小鼠动脉粥样硬化和2型糖尿病。另一项研究还发现,SAGPs在阿尔茨海默病患者的神经胶质细胞中高度表达。根据这些研究结果,研究人员在小鼠体内测试了这种疫苗,以靶向SAGP高表达细胞治疗阿尔茨海默病。"阿尔茨海默病目前占全球痴呆症患者的50%至70%。我们的研究在小鼠身上进行的新型疫苗试验为预防或改变这种疾病指出了一条潜在的途径。"该研究的主要作者、东京顺天堂大学医学研究生院心血管生物学和医学系博士后Chieh-LunHsiao博士说:"未来的挑战是在人类身上取得类似的结果。如果这种疫苗能在人类身上证明是成功的,那将是朝着延缓疾病进展甚至预防这种疾病迈出的一大步"。在这项研究中,研究小组创建了一个阿尔茨海默病小鼠模型,该模型模拟人脑,模拟淀粉样β诱导的阿尔茨海默病病理变化。为了测试SAGP疫苗的疗效,小鼠在两个月大和四个月大时分别接种了对照疫苗或SAGP疫苗。通常,阿尔茨海默氏症晚期患者缺乏焦虑感,这意味着他们对周围的事物缺乏感知。而接种了疫苗的小鼠则有焦虑感,这意味着它们更加谨慎,对周围的事物更加敏感--研究人员说,这一迹象可能预示着疾病的减轻。此外,阿尔茨海默病的几种炎症生物标志物也有所减少。研究发现,SAGP疫苗大大减少了大脑皮层区域脑组织中的淀粉样蛋白沉积,该区域负责语言处理、注意力和问题解决。接种疫苗的小鼠体内的星形胶质细胞(大脑中最丰富的胶质细胞类型,也是一种特殊的炎症分子)体积减小。其他炎症生物标志物也有所减少,这意味着大脑中的炎症在接种SAGP疫苗后有所改善。对6个月大的小鼠进行的行为测试(迷宫式装置)显示,接种SAGP疫苗的小鼠对环境的反应明显优于接种安慰剂疫苗的小鼠。接种了SAGP疫苗的小鼠表现得与正常健康的小鼠无异,而且对周围环境的感知能力更强。研究表明,SAGP蛋白的位置非常靠近被称为小胶质细胞的特化脑细胞,小胶质细胞在中枢神经系统的免疫防御中发挥作用。小胶质细胞有助于清除由蛋白质形成的破坏性斑块;但是,它们也会引发脑部炎症,从而损害神经元并加剧人的认知能力衰退,这可能是阿尔茨海默氏症发病的原因之一。据美国国立卫生研究院下属的国家老龄化研究所(NationalInstituteonAging)称,在阿尔茨海默氏症中,被称为淀粉样beta肽的脑蛋白聚集在一起形成斑块,在神经元之间聚集并破坏细胞功能。血管问题还可能导致血脑屏障破裂,血脑屏障通常保护大脑免受有害物质的伤害,同时允许葡萄糖和其他必要因素进入大脑。血脑屏障故障会阻止葡萄糖进入大脑,并阻碍有毒的β-淀粉样蛋白和蛋白质的清除,从而导致慢性炎症和阿尔茨海默氏症的发展。结语Hsiao说:"早期使用不同疫苗在小鼠模型中治疗阿尔茨海默病的研究成功地减少了淀粉样斑块沉积和炎症因子,然而,我们的研究与众不同之处在于,我们的SAGP疫苗还能更好地改变这些小鼠的行为。研究人员称,先前的研究表明,SAGP蛋白在小胶质细胞中高度升高,这意味着小胶质细胞是阿尔茨海默病的重要靶细胞。通过清除处于激活状态的小胶质细胞,大脑中的炎症也可能得到控制。疫苗可以靶向激活的小胶质细胞,清除这些有毒细胞,最终修复阿尔茨海默氏症患者的行为缺陷。"根据《2023年美国心脏协会统计更新》,2017年约有370万30岁及以上的美国人患有阿尔茨海默病,预计到2060年这一数字将增至930万。BCVS是世界上规模最大的会议之一,致力于基础研究和转化研究,以改善心脏健康,而这一目标在大流行病的影响下变得更加重要。2023年的会议由美国心脏协会基础心血管科学委员会主办,吸引了微RNA、心脏基因和细胞疗法、心脏发育等领域的顶尖研究人员参加,会议还包括组织工程和iPS细胞。...PC版:https://www.cnbeta.com.tw/articles/soft/1374111.htm手机版:https://m.cnbeta.com.tw/view/1374111.htm

封面图片

研究发现干细胞移植可更新脑细胞 治疗小鼠阿尔茨海默病

研究发现干细胞移植可更新脑细胞治疗小鼠阿尔茨海默病某些形式的阿尔茨海默氏症与一种名为小胶质细胞的脑细胞中的某些基因变异有关。小胶质细胞是大脑中的常驻免疫细胞,它们一直监视着这个重要器官,寻找病原体、损伤或代谢废物堆积的迹象,并着手修复。斯坦福大学的研究小组重点研究了一种名为TREM2的特殊基因。"TREM2的某些基因变异是阿尔茨海默病最强的遗传风险因素之一。数据令人信服地表明,小胶质细胞功能障碍可导致大脑神经变性,因此,恢复有缺陷的小胶质细胞功能可能是对抗阿尔茨海默病神经变性的一种方法是有道理的。"为了进行研究,研究人员韦尼格对TREM2基因有缺陷的小鼠进行了实验,给它们移植了来自健康小鼠的血液干细胞和祖细胞。结果发现,这些移植细胞能够重建受体的血液系统,甚至在大脑中形成新的细胞,其外观和功能与小胶质细胞相似。重要的是,这些类似小胶质细胞的新细胞取代了许多受体原有的小胶质细胞,并似乎恢复了它们的功能。它还减少了阿尔茨海默病的其他标志物,包括淀粉样蛋白斑块的堆积。韦尼格说:"我们的研究表明,大脑中大部分原有的小胶质细胞都被健康细胞取代,从而恢复了正常的TREM2活性。事实上,在移植的小鼠身上,我们看到通常[在]TREM2缺陷小鼠身上看到的淀粉样蛋白斑块沉积明显减少。"研究人员还表示,首先对移植细胞进行工程改造,使其具有更强的TREM2活性,就能增强效果。不过,尽管这项概念验证研究看起来很有希望,但仍有一些主要的注意事项。首先,生长出来的替代细胞类似于小胶质细胞,但与天然小胶质细胞并不完全相同--这种区别有可能导致其他并发症。韦尼格说:"这些差异可能会在某种程度上产生不利影响。我们必须仔细研究这个问题。"更大的问题是,这种治疗方法对人类来说具有侵入性和风险性。在移植新的造血干细胞之前,患者自身的原生造血干细胞需要先被破坏,使用放射线或化疗。白血病患者有时会接受这些治疗,但这些治疗过程既危险又令人不快。目前正在研究毒性较低的方法,如果其中任何一种方法取得成果,研究小组表示,这些方法最终可能会应用到阿尔茨海默氏症的治疗中。这项研究发表在《细胞干细胞》(CellStemCell)杂志上。...PC版:https://www.cnbeta.com.tw/articles/soft/1386585.htm手机版:https://m.cnbeta.com.tw/view/1386585.htm

封面图片

研究:深度睡眠或缓解阿尔茨海默病导致的记忆丧失

研究:深度睡眠或缓解阿尔茨海默病导致的记忆丧失美国一项新研究发现,深度睡眠能防止阿尔茨海默病相关蛋白质损害大脑,可能有助缓解病情导致的记忆丧失。新华社报道,深度睡眠,又称非快速眼动慢波睡眠。此前一些研究显示,深度睡眠对健康成年人的学习和记忆能力有益。阿尔茨海默病病理指标相同的患者,认知能力受损的程度可以相差很大,深度睡眠有可能是大脑对抗损伤的机制之一。美国加利福尼亚大学伯克利分校的研究人员在新一期英国《BMC医学》杂志上发表论文说,他们的新试验为上述理论提供了佐证。研究人员在论文中说,共62名健康老年人参与了这项研究,他们都没有痴呆症状,但一部分人脑部存在明显的β淀粉样蛋白沉积。这种沉积被认为是阿尔茨海默病的关键因素,会引发脑部一系列异常反应,导致神经元受损。研究人员监测受试者睡眠过程中的脑波,并在他们睡醒后进行记忆测试。结果发现,对于脑部存在β淀粉样蛋白沉积的受试者,深度睡眠时间较长的人测试成绩更好;如果脑部没有这种蛋白沉积,深度睡眠时间就对成绩没有影响。教育、运动、社交等途径积累的“认知储备”可帮助大脑对抗损伤,保持认知能力,但对阿尔茨海默病患者来说,大多数认知储备因素很难改变,缺乏干预空间。研究人员认为,深度睡眠是一个相对容易干预的因素,新发现意味着改善睡眠就有可能缓解病情。

封面图片

研究:促进神经元的形成可以帮助恢复阿尔茨海默病的记忆

研究:促进神经元的形成可以帮助恢复阿尔茨海默病的记忆科学家们发现,在患有阿尔茨海默病(AD)的小鼠中增加新神经元的生产可以挽救动物的记忆缺陷。该研究显示,新神经元能够融入存储记忆的神经回路并恢复其正常功能。这表明,促进神经元的产生可能是治疗AD患者的可行策略。新神经元是由神经干细胞通过一个被称为神经发生的过程产生。以前的研究表明,AD患者和携带跟AD有关的基因突变的实验室小鼠的神经发生都受到损害。这种损害在大脑中一个叫做海马体的区域尤为严重,该区域对记忆的获取和检索至关重要。伊利诺伊大学芝加哥医学院解剖学和细胞生物学系的OrlyLazarov教授说道:“然而,新形成的神经元在记忆形成中的作用及神经生成的缺陷是否导致与AD相关的认知障碍目前还不清楚。”在新JEM研究中,Lazarov和他的同事们通过基因增强神经元干细胞的生存以促进AD小鼠的神经生成。科学家们删除了在神经元干细胞死亡中起主要作用的基因Bax并最终导致了更多新神经元的成熟。以这种方式增加新神经元的产生恢复了动物的认知能力,这在测量空间识别和背景记忆的两种不同测试中得到了证明。通过荧光标记在记忆获取和检索过程中激活的神经元,科学家们发现,在健康小鼠的大脑中,参与存储记忆的神经回路包括许多新形成的神经元和较老、较成熟的神经元。在AD小鼠中,这些储存记忆的回路包含较少的新神经元,但当神经发生增加时,新形成的神经元的整合得到了恢复。对形成记忆储存回路的神经元的进一步分析显示,促进神经发生也会增加树突棘的数量。这些是突触中的结构,已知对记忆的形成至关重要。此外,促进神经生成还能恢复神经元基因的正常表达模式。Lazarov及其同事证实了新形成的神经元对记忆形成的重要性,他们在AD小鼠的大脑中特意使其失活。这逆转了促进神经生成的好处并阻止了动物记忆的任何改善。Lazarov说道:“我们的研究首次表明,海马神经发生的障碍通过减少用于记忆形成的未成熟神经元的可用性,在跟AD相关的记忆缺陷中发挥了作用。综合来看,我们的结果表明,增强神经生成可能对AD患者有治疗价值。”...PC版:https://www.cnbeta.com/articles/soft/1309715.htm手机版:https://m.cnbeta.com/view/1309715.htm

🔍 发送关键词来寻找群组、频道或视频。

启动SOSO机器人