新的催化技术突破料将开启大规模的能源节约

新的催化技术突破料将开启大规模的能源节约郎旭。资料来源:威斯康星大学麦迪逊分校催化剂物质加速化学反应,而自身不发生变化。它们在加工石油产品和生产各种物品方面发挥着至关重要的作用,包括药品、塑料、食品添加剂、化肥、环保燃料和各种工业化学品。科学家和工程师们已经花了几十年时间对催化反应进行微调--然而,由于目前不可能在工业规模的催化作用中经常涉及的极端温度和压力下直接观察这些反应,他们还不知道在纳米和原子尺度上到底发生了什么。这项新的研究有助于揭开这一神秘的面纱,对工业有潜在的重大影响。事实上,仅仅三个催化反应--蒸汽甲烷重整生产氢气、合成氨生产化肥和合成甲醇--就使用了世界能源的近10%。领导这项研究的华盛顿大学麦迪逊分校化学和生物工程教授马诺斯-马夫里卡基斯说:"如果你把运行这些反应的温度只降低几度,那么我们今天作为人类所面临的能源需求就会有巨大的减少。通过减少运行所有这些过程的能源需求,你也在减少它们的环境足迹。"马夫里卡基斯和博士后研究人员LangXu和KonstantinosG.Papanikolaou以及研究生LisaJe在2023年4月7日的《科学》杂志上发表了他们的进展消息。马诺-马夫里卡基斯。资料来源:威斯康星大学麦迪逊分校在他们的研究中,威斯康星大学麦迪逊分校的工程师们开发并使用强大的建模技术来模拟原子尺度上的催化反应。在这项研究中,他们研究了涉及纳米形式的过渡金属催化剂的反应,其中包括像铂、钯、铑、铜、镍和其他在工业和绿色能源中重要的元素。根据目前催化作用的刚性表面模型,过渡金属催化剂的紧密原子提供了一个二维表面,化学反应物粘附在上面并参与反应。当施加足够的压力和热量或电力时,化学反应物中原子之间的键就会断裂,允许碎片重新组合成新的化学产品。"普遍的假设是,这些金属原子彼此紧密结合,只是为反应物提供'着陆点'。每个人都假设的是,金属-金属键在它们催化的反应中保持完整,"马夫里卡基斯说。"因此,在这里,我们第一次提出了这样的问题:'打破反应物中的键的能量是否与破坏催化剂内的键所需的能量相似?"根据Mavrikakis的建模,答案是肯定的。为许多催化过程提供的能量足以打破键,并允许单个金属原子(称为腺原子)弹出并开始在催化剂表面移动。这些腺原子结合成团,作为催化剂上的站点,化学反应可以比催化剂的原始刚性表面更容易发生。利用一套特殊的计算方法,该团队研究了8种过渡金属催化剂和18种反应物的工业上重要的相互作用,确定了可能形成这种小型金属簇的能量水平和温度,以及每个簇中的原子数量,这也能极大地影响反应速度。他们在加州大学伯克利分校的实验合作者使用原子分辨率的扫描隧道显微镜来观察一氧化碳在镍(111)上的吸附情况,镍是一种稳定的、在催化中有用的结晶形式。他们的实验证实了显示催化剂结构中的各种缺陷也能影响单个金属原子如何松动,以及反应点如何形成的模型。马夫里卡基斯说,这个新框架正在挑战研究人员如何理解催化作用以及它如何发生的基础。它可能也适用于其他非金属催化剂,他将在未来的工作中对此进行研究。它也与理解其他重要现象有关,包括腐蚀和摩擦学,或运动中的表面的相互作用。研究人员正在重新审视在理解催化剂如何工作方面的一些非常成熟的假设,更广泛地说,分子如何与固体互动。...PC版:https://www.cnbeta.com.tw/articles/soft/1353835.htm手机版:https://m.cnbeta.com.tw/view/1353835.htm

相关推荐

封面图片

空气清洁技术的突破:新型催化剂可在室温下净化废气

空气清洁技术的突破:新型催化剂可在室温下净化废气埃米尔-亨森(EmielHensen)领导的科学家们在一篇新的《科学》文章中指出,通过改变催化剂的载体材料,即使在室温下,也能将有毒的一氧化碳几乎完全转化为二氧化碳气体。汽车催化剂是将铂、钯、铑等贵金属沉积在氧化铈(又称铈)材料的基底上制成的。然而,贵金属既稀有又昂贵。因此,世界各地的研究人员正在研究如何通过减少使用这些材料来达到相同甚至更好的催化活性。例如,德国电子科技大学的亨森研究小组在之前的一篇论文中证明,通过以单个原子的形式分散贵金属,不仅可以减少材料的使用,而且在某些条件下,催化剂还能更有效地发挥作用。在第一作者瓦列里-穆拉维夫(ValeryMuravev)的博士研究项目中,研究人员将注意力从贵金属转移到下面的载体材料(本例中为铈)上,以进一步改进催化剂。他们生产出不同晶体尺寸的铈,并在同一步骤中将贵金属沉积为单个原子。随后,他们研究了这些材料组合在一氧化碳中结合额外氧原子的能力。结果表明,在过量一氧化碳存在的冷启动条件下,4纳米大小的小铈晶体明显改善了贵金属钯的性能。这种性能的提高可以解释为在较小尺寸的铈晶体中氧原子的反应活性更高。在更常规的条件下,8纳米的铈晶体是在低于100摄氏度的温度下达到高催化活性所需的最佳尺寸。这项研究首次表明,在开发催化剂时,不仅要考虑必须发挥作用的贵金属。在这种情况下,改变作为活性材料载体的颗粒的大小,为进一步改进催化剂提供了一种有趣的新可能性,从而提高化学反应的效率和特异性。这对于开发将环境空气中的二氧化碳与绿色氢气结合起来生产燃料或生产可持续塑料的化合物的工艺也具有重要意义。现在,研究人员将与为汽车工业生产催化剂的英国公司庄信万丰(JohnsonMatthey)一起,进一步探索如何将这一发现转化为新产品。...PC版:https://www.cnbeta.com.tw/articles/soft/1381871.htm手机版:https://m.cnbeta.com.tw/view/1381871.htm

封面图片

环保新突破:单原子催化剂将二氧化碳转化为乙醇

环保新突破:单原子催化剂将二氧化碳转化为乙醇串联单原子电催化剂实现二氧化碳还原成乙醇。资料来源:DICP二氧化碳还原的挑战Cn(n≥2)液体产品因其高能量密度和易于储存而备受青睐。然而,由于对机理的理解有限,C-C偶联途径的操作仍是一项挑战。最近,由张涛教授和黄延强教授领导的研究小组在美国加利福尼亚大学洛杉矶分校进行了一项突破性研究。中国科学院大连化学物理研究所的张涛和黄延强教授领导的研究小组开发了一种锡基串联电催化剂(SnS2@Sn1-O3G),在-0.9VRHE和17.8mA/cm2的几何电流密度条件下,该催化剂可重复生成乙醇,法拉第效率高达82.5%。这项研究最近发表在科学杂志《自然-能源》上。研究人员通过在三维碳泡沫上进行SnBr2和硫脲的溶热反应,制造出SnS2@Sn1-O3G。这种电催化剂由SnS2纳米片和原子分散的Sn原子(Sn1-O3G)组成。机理研究表明,这种Sn1-O3G可分别吸附*CHO和*CO(OH)中间体,从而通过一种前所未有的甲酰基-碳酸氢盐偶联途径促进C-C键的形成。此外,通过使用同位素标记的反应物,研究人员追踪了在Sn1-O3G催化剂上形成的最终C2产物中C原子的形成路径。分析表明,产物中的甲基C来自甲酸,而亚甲基C来自二氧化碳。黄教授说:"我们的研究为乙醇合成中C-C键的形成提供了一个替代平台,并为操纵二氧化碳还原途径以获得所需的产品提供了一种策略。"...PC版:https://www.cnbeta.com.tw/articles/soft/1398721.htm手机版:https://m.cnbeta.com.tw/view/1398721.htm

封面图片

化学合成可持续催化剂迎来突破 可减少对稀有金属的依赖

化学合成可持续催化剂迎来突破可减少对稀有金属的依赖研究人员开创了一种更高效、更环保的化学合成方法,有望显著提高可持续性。这项创新技术涉及将孤立的原子分散在氮化碳载体上,形成一种在酯化反应中更活跃的催化剂,这对于生产药品、食品添加剂和聚合物等产品至关重要。该催化剂减少了对稀有金属的依赖,并且可以通过阳光激活,从而抑制能源消耗。图片来源:米兰理工大学米兰理工大学的一项新发现开辟了可持续化学合成领域的新视角,推广创新解决方案,使化学品能够以更高效、更环保的方式生产。该研究发表在著名的《自然综合》杂志上。利用将孤立原子分散在氮化碳载体上的创新技术,该团队开发了一种在酯化反应中更具活性和选择性的催化剂。这是一个重要的反应,其中羧酸和溴化物结合形成用于制造药物、食品添加剂和聚合物的产品。这种新型催化剂的革命性特点是它减少了稀有金属的使用,这是节约关键资源和使工艺更具可持续性的重要一步。此外,该催化剂可以通过阳光激活,从而无需采用能源密集型方法。这一发现在减少对有限资源的依赖和降低催化过程对环境的影响方面具有巨大的潜力。化学工程副教授GianvitoVilé教授协调了该项目,而米兰理工大学MarieSkłodowska-Curie博士后研究员MarkBajada是该项目的第一论文作者。该研究是与米兰比可卡大学和都灵大学的研究人员密切合作进行的,并由欧盟委员会通过MarieSkłodowska-Curie博士后奖学金和最近授予米兰理工大学(SusPharma)的HorizonEurope项目资助)。...PC版:https://www.cnbeta.com.tw/articles/soft/1369831.htm手机版:https://m.cnbeta.com.tw/view/1369831.htm

封面图片

绿色化学技术新突破 研究人员将氨转化为可持续氮源

绿色化学技术新突破研究人员将氨转化为可持续氮源通过主族元素化合物对氨进行可逆活化和催化转移。资料来源:弗兰克-布雷赫,德国工业技术大学胺是农用和医药化学品以及洗涤剂、染料、润滑剂和涂料的基本成分。此外,还可用作生产聚氨酯的催化剂。胺还可用于炼油厂和发电厂的气体洗涤器。通过破坏氮和氢之间的强键(即活化),氨分子至少在理论上可以转移到其他分子上,如不饱和碳氢化合物。例如,将氨转移到化学工业中的重要物质乙烯上就会产生乙胺。化学家将这种加成称为氢化反应。然而,氨和乙烯之间不易发生反应。反应的发生需要催化剂。然而,基于过渡金属的传统催化剂会与氨发生反应而失去活性。"因此,非活化烯烃与氨的氢化反应被认为是催化领域的一大挑战与目标,"KIT无机化学研究所分子化学部研究小组负责人FrankBreher教授说。氨的活化和催化转移通过与帕德博恩大学(PaderbornUniversity)和马德里康普顿斯大学(ComplutenseUniversityofMadrid)的研究人员合作,无机化学研究所的弗兰克-布雷赫(FrankBreher)教授和费利克斯-克雷默(FelixKrämer)博士现在距离实现这一具有挑战性的目标又近了一步。"我们已经开发出一种氨的活化系统,它不是基于过渡金属,而是基于主族元素。活化和随后转移氨的"原子经济"过程不会产生任何废物,这在可持续发展方面具有特别意义,"布雷赫说。相关研究成果现已发表在《自然-化学》杂志上。研究小组制备出了一种所谓的受挫路易斯对(FLP),它由作为电子对受体的酸和作为电子对供体的碱组成。通常情况下,两者会相互反应并产生加合物。如果阻止或至少限制加合物的形成,就会产生受挫情况,分子很容易与氨等小分子发生反应。"关键是要抑制反应性,使其与小分子的反应是可逆的。只有这样,才有可能在催化中使用这种FLP。我们是第一个用氨作为底物实现这一点的人,"Breher报告说。研究发现,FLP很容易以热中性方式与非水氨发生反应,并在室温下可逆地拆分氨的氮氢键。研究人员首次展示了基于主族元素的催化剂催化的NH3转移反应。"迄今为止,我们只转化了活化底物,没有转化不饱和碳氢化合物。但我们已经更接近我们梦想中的反应了,"布雷赫说。"我们预计,我们的首次原理验证将启动进一步的工作,将N-H活化氨用作一种易于获得且可持续的氮源。"参考文献FelixKrämer、JanParadies、IsraelFernández和FrankBreher于2023年9月28日发表在《自然-化学》上的文章:"一种能够在非水介质中活化和催化氨转移的结晶铝碳基双亲化合物"。DOI:10.1038/s41557-023-01340-9编译来源:ScitechDaily...PC版:https://www.cnbeta.com.tw/articles/soft/1403155.htm手机版:https://m.cnbeta.com.tw/view/1403155.htm

封面图片

催化剂技术的进步可能带来更清洁的氢能源

催化剂技术的进步可能带来更清洁的氢能源他们的研究结果最近发表在《美国国家科学院院刊》上。氢能是一种新兴的清洁和可持续能源,在绿色未来方面具有巨大潜力。作为宇宙中最丰富的元素,氢可以从可再生资源中生产出来,并用作发电、运输和工业应用的多功能燃料。它的燃烧仅产生水蒸气作为副产品,这使其成为减少温室气体排放和减缓气候变化的有前途的解决方案。“了解氢等清洁燃料的化学反应是如何发挥作用的非常具有挑战性——这篇论文代表了我在堪萨斯大学第一年开始的一个项目的高潮,”合著者、化学副教授詹姆斯·布莱克莫尔(JamesBlakemore)说。劳伦斯的研究构成了这一发现的基础。“我们的论文提供了通过专门技术来之不易的数据,以了解某种制氢催化剂如何发挥作用,”他说。“堪萨斯大学和布鲁克海文所使用的技术非常专业。实施这些使我们能够全面了解如何从氢的组成部分、质子和电子中制造氢。”布莱克莫尔在堪萨斯大学的研究是这一突破的基础。他将他的工作带到布鲁克海文,在他们的能源研究加速器中心使用脉冲辐射分解以及其他技术进行研究。布鲁克海文是美国仅有的两个拥有可进行脉冲放射分解实验的设备的地方之一。该论文的合著者、布鲁克海文化学家德米特里·波利安斯基(DmitryPolyansky)表示:“能够完全了解整个催化循环是非常罕见的。这些反应要经历许多步骤,其中一些步骤非常快且不易观察到。”Blakemore和他的合作者通过研究一种基于五甲基环戊二烯基铑络合物(简称为[Cp*Rh])的催化剂而获得了这一发现。他们专注于与稀有金属铑配对的Cp*(发音为C-P-“Star”)配体,因为之前的工作表明这种组合适合这项工作。“铑系统被证明是脉冲放射分解的一个很好的目标,”布莱克莫尔说。“Cp*配体,正如它们的名字一样,是大多数有机金属化学家以及真正的各种化学家所熟悉的。它们用于支撑许多催化剂,并可以稳定催化循环中涉及的各种物质。本文的一项重要发现为Cp*配体如何密切参与析氢化学提供了新的见解。”但布莱克莫尔强调,除了生产清洁氢气之外,这些发现还可能导致其他化学工艺的改进。“在我们的工作中,我们希望化学家能够看到一项关于常见配体Cp*如何实现不寻常反应性的研究,”KU研究人员说。“这种不寻常的反应性与氢有关,但实际上比这更重要,因为Cp*存在于许多不同的催化剂中。化学家通常认为催化剂是基于金属的。按照这种思维方式,如果打算制造一个新分子,金属是将各个组成部分结合在一起的关键角色。我们的论文表明情况并非总是如此。Cp*可以参与将各个部分缝合在一起形成产品。”Blakemore表示,他希望这篇论文能够成为改进其他依赖Cp*配体的催化剂和系统的一个契机。这一突破得到了国家科学基金会和能源部科学办公室的支持,可以更广泛地应用于工业化学。布莱克莫尔目前正致力于应用本研究中使用的技术来开发核燃料回收和锕系元素处理的新方法。堪萨斯大学的研究生和本科生也参与了支持这一突破的研究。“这个项目对学生来说是一个非常重要的培训工具,”布莱克莫尔说。“第一作者、研究生WadeHenke目前在阿贡国家实验室担任博士后。研究生彭云为第二作者,并启动了与Brookhaven的联合工作;两人现在都已完成博士学位。多年来,本科生也为这个项目做出了贡献,提供了新的综合体和见解,我们用它们来构建本文中出现的故事。“总而言之,我认为这是一个成功的项目,也是多年来团队真正努力的成果。”...PC版:https://www.cnbeta.com.tw/articles/soft/1370173.htm手机版:https://m.cnbeta.com.tw/view/1370173.htm

封面图片

纳米波纹石墨烯成为强大的催化剂

纳米波纹石墨烯成为强大的催化剂科学家们发现,石墨烯中的纳米波纹使它成为一种强大的催化剂,尽管它被认为是化学惰性的。他们发表在PNAS上的研究表明,石墨烯表面的纳米级波纹可以加速氢气的分裂,就像最好的金属基催化剂一样,而且这种效应可能存在于所有二维材料中。本周发表在《美国国家科学院院刊》(PNAS)上的研究表明,表面有纳米级波纹的石墨烯可以加速氢气的分裂,就像最好的金属基催化剂一样。这种意想不到的效果可能存在于所有二维材料中,这些材料本身都是不平坦的。曼彻斯特团队与来自中国和美国的研究人员合作进行了一系列的实验,以证明石墨烯的非平坦性使其成为一种强大的催化剂。首先,利用超灵敏的气流测量和拉曼光谱,他们证明了石墨烯的纳米级波纹与它与分子氢(H2)的化学反应性有关,并且它解离成原子氢(H)的活化能相对较小。顶部有离解氢原子的波纹石墨烯。资料来源:曼彻斯特大学研究小组评估了这种反应性是否足以使该材料成为高效的催化剂。为此,研究人员使用了氢气和氘气(D2)的混合气体,发现石墨烯确实表现为一种强大的催化剂,将氢气和D2转化为HD。这与石墨和其他碳基材料在相同条件下的行为形成了鲜明的对比。气体分析显示,单层石墨烯产生的HD量与已知的氢气催化剂(如氧化锆、氧化镁和铜)大致相同,但石墨烯只需要极少量,不到后者催化剂的100倍。"我们的论文表明,独立的石墨烯与化学性质极其惰性的石墨和原子平坦的石墨烯都有很大不同。"论文第一作者孙鹏展博士说:"我们还证明了与石墨烯表面的空位、边缘和其他缺陷等'通常嫌疑人'相比,纳米级的波纹对催化作用更为重要。"论文的第一作者Geim教授补充说:"由于热波动和不可避免的局部机械应变,所有原子级薄的晶体都会自然发生纳米波纹,其他二维材料也可能显示出类似的增强反应性。至于石墨烯,我们当然可以期待它在其他反应中具有催化和化学活性,而不仅仅是涉及氢气的反应。""二维材料最常被认为是原子级的平板,由不可避免的纳米级波纹造成的影响至今被忽视。我们的工作表明,这些影响可能是戏剧性的,这对二维材料的使用有重要影响。例如,块状硫化钼和其他茂金属经常被用作三维催化剂。现在我们应该想一想,它们在二维形式下是否会更加活跃"。...PC版:https://www.cnbeta.com.tw/articles/soft/1349743.htm手机版:https://m.cnbeta.com.tw/view/1349743.htm

🔍 发送关键词来寻找群组、频道或视频。

启动SOSO机器人