照亮高速计算之路:太赫兹激光脉冲改变了铁磁现象

照亮高速计算之路:太赫兹激光脉冲改变了铁磁现象YTiO3是一种过渡金属氧化物,只有在27K或-246摄氏度以下才会变成铁磁性,其特性类似于冰箱磁铁。在这些低温下,钛原子上的电子自旋向一个特定方向排列。正是这种自旋的集体排序使整个材料具有宏观上的磁化,并使其变成铁磁性。相反,在27K以上的温度下,单个自旋随机波动,因此没有铁磁性的发展。利用德国汉堡马克斯-普朗克物质结构与动力学研究所(MPSD)开发的强大的太赫兹光源,研究小组成功地在YTiO3中实现了铁磁性,温度高达近100K(-193°C),这远远高于其正常转变温度。光诱导的状态也持续了许多纳秒。强烈的光脉冲被设计为以协调的方式"摇动"材料的原子,使电子能够对齐它们的自旋。"脉冲的频率被调整为驱动YTiO3晶格的特定振动,称为声子,"主要作者AnkitDisa解释说。"我们发现,当我们以9太赫兹的自然频率激发一个特定的声子时,自旋的集体秩序和电子的轨道被修改,导致了对铁磁状态的更大倾向。当驱动其他声子时,我们观察到完全不同的结果:在4太赫兹激发一个声子实际上会恶化铁磁性,而在17太赫兹激发一个声子会增强铁磁性--但不像9太赫兹声子那样强烈。"在通常的过渡温度27K以下,9THz声子的激发大大增加了磁化,将其提高了约20%,达到了理论最大值--这是迄今为止尚未达到的水平。这些实验中使用的太赫兹源提供了强烈的脉冲,并且能够激发材料中一个非常狭窄的频率区域,使其成为一个极其精确的工具。它已经被部署在其他几个由MPSD领导的关于光增强超导性和磁性的研究中。然而,这项工作首次揭示了通过激发一系列晶格振动可以产生质量上不同的效果。除了加深科学家对强烈和超快的光-物质相互作用的理解外,这些结果是走向磁性元件的光学控制的重要垫脚石。MPSD凝聚态物质动力学部主任AndreaCavalleri解释说:"这项工作不仅展示了按需开关磁性,它还让我们预见到了在超高速存储和处理信息时可以做什么。"除了这个演示,我们的工作还强调了在无序的、波动的物质相中创造秩序的能力,类似于用光来冻结水。控制这些过程一直是我们小组的一个长期目标。多年来,我们已经报告了一些其他的实现,包括光诱导高温超导性和光诱导铁电性。"...PC版:https://www.cnbeta.com.tw/articles/soft/1358845.htm手机版:https://m.cnbeta.com.tw/view/1358845.htm

相关推荐

封面图片

莱斯大学施展量子奇迹:原子之舞让水晶也能变“磁铁”

莱斯大学施展量子奇迹:原子之舞让水晶也能变“磁铁”莱斯大学的研究利用手性声子实现了变革性的量子效应。量子材料是未来高速、高能效信息系统的关键。挖掘其变革潜力的问题在于,在固体中,大量原子往往会淹没电子所携带的奇异量子特性。量子材料科学家朱瀚宇实验室的研究人员发现,当原子绕圈运动时,它们也能创造奇迹:当稀土晶体中的原子晶格产生一种被称为手性声子的螺旋形振动时,晶体就会变成一块磁铁。圆偏振太赫兹光脉冲激发的手性声子在氟化铈中产生超快磁化。氟离子(红色、紫红色)在圆偏振太赫兹光脉冲(黄色螺旋)的作用下开始运动,其中红色表示手性声子模式下运动幅度最大的离子。铈离子用茶色表示。罗盘针代表旋转原子所引起的磁化。资料来源:MarioNorton和罗家明/莱斯大学根据最近发表在《科学》(Science)杂志上的一项研究,将氟化铈暴露在超快脉冲光下,其原子会跳起舞来,瞬间激发电子自旋,使它们与原子旋转对齐。这种排列需要强大的磁场才能激活,因为氟化铈具有天然顺磁性,即使在零度以下也能产生随机定向的自旋。每个电子都有一个磁性自旋,它就像一个嵌入材料中的微小罗盘针,会对局部磁场产生反应,莱斯大学材料科学家兼合著者鲍里斯-雅科布森(BorisYakobson)说。因为互为镜像而不会叠加,本不应该影响电子自旋的能量。但在这种情况下,原子晶格的手性运动会使材料内部的自旋极化,就像施加了一个大磁场一样"。BorisYakobson是莱斯大学KarlF.Hasselmann工程学教授、材料科学与纳米工程学教授以及化学教授。图片来源:JeffFitlow/莱斯大学虽然时间很短,但使自旋对齐的力却大大超过了光脉冲的持续时间。由于原子只在特定频率下旋转,并且在较低温度下移动的时间较长,与频率和温度相关的额外测量进一步证实,磁化是原子集体手性"舞蹈"的结果。朱瀚宇是莱斯大学威廉-马什-莱斯讲座教授兼材料科学与纳米工程助理教授。图片来源:JeffFitlow/莱斯大学"原子运动对电子的影响令人惊讶,因为电子比原子轻得多,速度也快得多,"莱斯大学威廉-马什-莱斯讲座教授、材料科学与纳米工程助理教授朱瀚宇说。"电子通常可以立即适应新的原子位置,忘记其先前的轨迹。如果原子顺时针或逆时针移动,即在时间上向前或向后移动,材料特性将保持不变--物理学家将这种现象称为时间逆对称性。"原子的集体运动打破了时间逆对称性,这一观点相对较新。目前,手性声子已在几种不同的材料中得到实验证明,但它们究竟如何影响材料特性还不甚明了。"我们希望定量测量手性声子对材料电学、光学和磁学特性的影响,"朱瀚宇说。"由于自旋指的是电子的旋转,而声子描述的是原子的旋转,因此人们天真地认为两者可能会相互影响。因此,我们决定重点研究一种叫做自旋-声子耦合的奇妙现象。"自旋-声子耦合在硬盘写入数据等实际应用中发挥着重要作用。今年早些时候,朱的研究小组在单分子层中展示了自旋-声子耦合的新实例,其中原子线性移动,自旋晃动。罗家明是莱斯大学应用物理学研究生,也是这项研究的第一作者。资料来源:JeffFitlow/莱斯大学在他们的新实验中,朱和团队成员必须找到一种方法来驱动原子晶格以手性方式运动。这就要求他们选择正确的材料,并在合作者理论计算的帮助下,以正确的频率产生光线,使其原子晶格旋转。这项研究的第一作者、应用物理学研究生罗佳明解释说:"目前还没有现成的光源能达到我们的声子频率(约10太赫兹)。我们通过混合强红外光和扭曲电场来与手性声子'对话',从而产生光脉冲。此外,我们还采取了另外两种红外光脉冲,分别监测自旋和原子运动。"除了从研究成果中获得有关自旋-声子耦合的见解外,实验设计和设置还将有助于为未来的磁性和量子材料研究提供信息。"我们希望定量测量手性声子产生的磁场能帮助我们制定实验方案,以研究动态材料中的新物理学,我们的目标是通过光或量子波动等外部场来设计自然界不存在的材料。林彤、朱汉宇和罗家明林彤(左起)、朱汉宇和罗家明在EQUAL实验室。图片来源:JeffFitlow/莱斯大学...PC版:https://www.cnbeta.com.tw/articles/soft/1396195.htm手机版:https://m.cnbeta.com.tw/view/1396195.htm

封面图片

科学家运用太赫兹技术开启量子传感之门

科学家运用太赫兹技术开启量子传感之门图为莱斯大学新兴量子和超快材料实验室研究生徐睿制作的三个超快太赫兹场聚光器样品。底层(白色正方形可见)由钛酸锶制成,其表面图案为聚光器结构--可集中太赫兹频率红外光的微观同心圆阵列。这些阵列在显微镜下清晰可见(插图),但用肉眼观察时,就像细粒度的点状图案。图片来源:GustavoRaskosky拍摄/RuiXu/莱斯大学添加插图识别光谱中的差距莱斯大学三年级博士生、最近发表在《先进材料》(AdvancedMaterials)杂志上的一篇文章的第一作者徐睿说:"中红外光和远红外光存在明显的差距,大约在5-15太赫兹的频率和20-60微米的波长范围内,与较高的光学频率和较低的无线电频率相比,目前还没有很好的商业产品。"这项研究是在威廉-马什-莱斯讲座教授、材料科学与纳米工程助理教授朱涵宇(HanyuZhu)的新兴量子与超快材料实验室进行的。量子准电透镜(截面图),可聚焦频率为5-15太赫兹的光脉冲。传入的太赫兹光脉冲(红色,左上角)通过钛酸锶(蓝色)基底上的环形聚合物光栅和圆盘谐振器(灰色)转换成表面声子-极化子(黄色三角形)。黄色三角形的宽度表示声子-极化子在到达用于聚焦和增强出射光的圆盘谐振器(右上角红色)之前,通过每个光栅间隔传播时电场的增加。左下方的钛酸锶分子原子结构模型描述了声子-极化子振荡模式中钛(蓝色)、氧(红色)和锶(绿色)原子的运动。图片来源:Zhu实验室/莱斯大学提供太赫兹间隙的重要性和挑战Zhu说:"这一频率区域的光学技术--有时被称为'新太赫兹间隙',因为它远比0.3-30太赫兹'间隙'中的其他频率区域更难以接近--对于研究和开发用于接近室温的量子电子学的量子材料,以及感知生物分子中的功能基团以进行医学诊断,可能非常有用。"研究人员面临的挑战一直是找到合适的材料来承载和处理"新太赫兹间隙"中的光。这种光会与大多数材料的原子结构产生强烈的相互作用,并很快被它们吸收。莱斯大学材料科学与纳米工程系学生RuiXu是一项研究的第一作者,该研究表明钛酸锶有可能在3-19太赫兹频率下实现高效光子设备。图片来源:GustavoRaskosky拍摄/莱斯大学钛酸锶和量子顺电性Zhu的研究小组利用钛酸锶(一种锶和钛的氧化物)将强相互作用转化为优势。Xu说:"它的原子与太赫兹光的耦合如此强烈,以至于形成了被称为声子-极化子的新粒子,这些粒子被限制在材料表面,不会在材料内部消失。"其他材料支持更高频率的声子-极化子,而且通常支持的范围很窄,而钛酸锶则不同,它支持整个5-15太赫兹间隙的声子-极化子,这是因为钛酸锶具有一种称为量子顺电性的特性。钛酸锶的原子表现出巨大的量子波动和随机振动,因此能有效捕捉光线,而不会被捕捉到的光线自我捕获,即使在零开尔文温度下也是如此。"我们通过设计和制造超快场聚光器,证明了钛酸锶声子-极化子器件在7-13太赫兹频率范围内的概念,"Xu说。"这种器件能将光脉冲挤压到小于光波长的体积内,并保持较短的持续时间。因此,我们实现了每米近千兆伏的强瞬态电场。HanyuZhu是莱斯大学威廉-马什-莱斯讲座教授兼材料科学与纳米工程助理教授。图片来源:JeffFitlow摄影/莱斯大学未来影响与应用电场是如此之强,以至于它可以用来改变材料的结构,从而产生新的电子特性,或者从微量的特定分子中产生新的非线性光学响应,这种响应可以用普通的光学显微镜检测到。Zhu说,他的研究小组开发的设计和制造方法适用于许多市售材料,可以实现3-19太赫兹范围内的光子设备。...PC版:https://www.cnbeta.com.tw/articles/soft/1378127.htm手机版:https://m.cnbeta.com.tw/view/1378127.htm

封面图片

科学家发明新型半导体激发技术

科学家发明新型半导体激发技术横滨国立大学的科学家和加州理工学院的同事利用高强度、宽频带的超快太赫兹脉冲,在一种二维半导体材料中实现了原子激发,推动了电子设备的发展。他们的论文于3月19日发表在《应用物理通讯》(AppliedPhysicsLetters)杂志上,并作为编辑推荐文章。二维(2D)材料或片状纳米材料因其独特的电子特性而成为未来半导体应用的理想平台。过渡金属二掺杂物(TMDs)是二维材料中的一个重要类别,由夹在掺杂物原子层之间的过渡金属原子层组成。这些原子以晶格结构排列,可以围绕其平衡位置振动或振荡--这种集体激发被称为相干声子,在决定和控制材料特性方面起着至关重要的作用。声波诱导技术的创新传统上,相干声子由可见光和近红外区域的超短脉冲激光器诱导。使用其他光源的方法仍然有限。横滨国立大学工程科学研究生院助理教授、该研究的第一作者SatoshiKusaba说:"我们的研究解决了超快太赫兹频率激光器(或低能光子)如何在TMD材料中诱导相干声子这一基本问题。"WSe2中声子的超快宽带太赫兹激发和偏振旋转探测示意图。获得的结果(右下)包括通过和频过程激发的相干声子振荡信号(右上)。资料来源:SatoshiKusaba/横滨国立大学太赫兹辐射是指频率在太赫兹范围内的电磁波,介于微波和红外频率之间。研究小组制备了超快宽带太赫兹脉冲,以诱导一种名为WSe2的TMD薄膜中的相干声子动力学。为检测光学各向异性(换句话说,即光在穿过材料时的表现),研究人员安排了一套精确而灵敏的装置。研究人员研究了超短激光脉冲与材料相互作用时电场方向的变化;这些变化被称为偏振旋转。通过仔细观察微小的诱导光学各向异性,研究小组成功地探测到了太赫兹脉冲诱导的声子信号。"我们的研究最重要的发现是,太赫兹激发可以通过一个独特的和频激发过程在TMD中诱导相干声子,"研究时的加州理工学院博士生、本研究的共同第一作者Haw-WeiLin说。"这种机制与共振和线性吸收过程有着本质区别,它涉及两个太赫兹光子的能量总和与声子模式的能量总和相匹配"。由于通过这种和频过程可以激发的声子模式的对称性完全不同于更典型的共振线性过程,因此本研究中成功使用的激发过程对于完全控制材料中的原子运动非常重要。这项研究成果的意义超出了基础研究的范畴,有望在现实世界中得到广泛应用。"通过和频激发过程,我们可以利用太赫兹激发相干地控制二维原子位置,"Kusaba说。"这可能为控制TMD的电子状态打开大门,这对于开发谷电技术和使用TMD的电子设备,实现低功耗、高速计算和专用光源,是大有可为的"。编译来源:ScitechDaily...PC版:https://www.cnbeta.com.tw/articles/soft/1430619.htm手机版:https://m.cnbeta.com.tw/view/1430619.htm

封面图片

认识Q-硅 - 一种用于自旋电子量子计算机的新型磁性材料

认识Q-硅-一种用于自旋电子量子计算机的新型磁性材料北卡罗来纳州立大学团队通过使用持续时间仅为纳秒的激光脉冲撞击非晶硅,使其熔化后又迅速冷却以再次硬化从而获得了这一发现。这创造了一种新的硅形式,该团队将其称为Q-硅,类似于他们之前创建Q-碳的工作。Q-硅拥有一些普通旧硅所缺乏的新特性,其中最重要的是室温下的铁磁性。这种磁性对于某些数据存储方法至关重要,并且可以帮助解锁一个称为自旋电子学的新兴领域,顾名思义,该领域通过电子的“自旋”而不是电荷来传输和存储数据,就像当前的电子产品一样。这有可能使设备更小、更快、更节能。这也可能使其成为量子计算机的绝佳材料,量子计算机不仅可以存储1和0的信息,还可以同时存储两者的叠加信息。这使得它们能够执行比任何传统计算机更先进的计算。不仅仅是铁磁性,与普通材料相比,Q-硅还表现出更高的硬度和超导性,这两种特性也有助于自旋电子学和量子计算。该研究的通讯作者杰伊·纳拉扬(JayNarayan)表示:“Q-硅的这一发现将通过增加自旋电子学或基于自旋的量子计算等新功能来彻底改变现代微电子学。简而言之,Q-silicon为自旋电子学与芯片上微电子学的集成提供了一个理想的平台。”该研究发表在《材料研究快报》杂志上。阅读文献:https://www.tandfonline.com/doi/full/10.1080/21663831.2023.2224396...PC版:https://www.cnbeta.com.tw/articles/soft/1368931.htm手机版:https://m.cnbeta.com.tw/view/1368931.htm

封面图片

理化学研究所的手持式太赫兹设备可透视材料内部 且无有害辐射

理化学研究所的手持式太赫兹设备可透视材料内部且无有害辐射但太赫兹技术迄今为止一直处于停滞状态,因为很难将微波或可见光技术以有用的尺寸和功率输出应用于太赫兹范围。由HiroakiMinamide和他的团队创建的设备,可有效地将红外辐射转换为太赫兹波。它可以在太赫兹波段的整个范围内产生太赫兹辐射。图片来源:©2023RIKEN例如,产生太赫兹波的一种方法是开发产生更高频率、超短波长微波的电气设备。但这在一定程度上是困难的,因为这些设备需要高度优化的参数来产生更好的电气性能,这已被证明具有挑战性。另一种策略是使用非线性晶体材料,通过转换更短、更高频率的红外光波来产生太赫兹波。理化学研究所先进光子学中心正在探索第二种策略——通过转换红外激光器的输出来产生太赫兹波。传统上,这种方法需要巨大的激光器来产生足够强大的太赫兹波,以满足大多数实际应用的需要。但这限制了太赫兹技术在实际应用中的应用——在这些应用中,用于原位分析的便携式设备将更有价值。最近,它们在实现这一目标方面取得了巨大进展,并正在进行多项行业合作。铌酸锂是一种非线性晶体,在受到近红外激光照射时会产生太赫兹波束,但尽管经过多年的工作,仍无法使用这种方法产生足够强大的太赫兹波。研究人员发现了1993年的一篇论文,其中描述了激光脉冲持续时间对非线性晶体的影响。这项分析可见光的研究表明,使用较短的脉冲可以减少称为布里渊散射的光散射效应。通过减少激光脉冲持续时间,有可能可以最大限度地减少铌酸锂晶体的布里渊散射,这可能使我们能够将更多的激光转换为太赫兹波并增加功率输出。注意间隙:太赫兹间隙夹在电磁频谱上的微波和红外辐射之间,迄今为止在技术中尚未得到充分利用。与X射线一样,太赫兹波具有穿透材料的能力。但由于太赫兹波的频率(以及能量)比X射线低得多,因此它们不会像电离辐射那样对健康造成同样的风险。最终研究人员证实使用亚纳秒激光脉冲,可以摆脱布里渊散射,将太赫兹波功率输出提高六个数量级——从200毫瓦到100千瓦,从一个只有一平方米的设备中获得了强大的发射功率,比以前充满整个房间的太赫兹设备小得多,但这对于实际应用来说仍然太大。为了进一步小型化我们的太赫兹波源,理化学研究所用具有人工偏振调制微结构的薄铌酸锂晶体取代了之前使用的大块铌酸锂晶体锭,这种晶体被称为周期性极化铌酸锂(PPLN)晶体。PPLN晶体通常用于可见光区域,由于其更高的光转换效率,能够用来开发手持设备。在PPLN研究之初,还没有已知的方法可以使用PPLN晶体有效地产生太赫兹波,研究人员最初对PPLN晶体的行为感到非常困惑。我们没有看到太赫兹波,只是从晶体中产生了意想不到的光束。在仔细分析这种光的特性后,他们最终意识到太赫兹波正在产生,但方向却出乎意料。光与PPLN偏振调制结构之间的相互作用导致晶体后部产生太赫兹波。当将探测器移到它后面时,我们发现了太赫兹波,这意味着终于可以做出一个巴掌大小的原型机,转换效率高,功率充足。只需旋转晶体就可以调整产生的太赫兹波的频率,新的扫描设备可以完全覆盖光谱的关键亚太赫兹区域,这对于无损成像应用尤其重要。研究基于成熟的光子和激光技术,通过非线性光学效应实现光波和太赫兹波之间的光子转换。我们通过光注入降低阈值并稳定输出功率,实现了后向太赫兹波参量振荡的级联振荡,在0.3太赫兹频率下实现了200瓦的峰值太赫兹输出功率;在向后光学量子转换过程中将太赫兹波转换为光波;并成功探测到约50阿托焦耳的超弱太赫兹波,其灵敏度比4开尔文测辐射热计灵敏1000倍。这些结果提供了基于太赫兹到光量子光子转换的新量子研究。最新的结果基于将量子理论纳入我们的工作,未来的工作将探索量子纠缠——一个量子粒子神秘地镜像另一个遥远的粒子——以提高太赫兹探测器的灵敏度。高度小型化、高功率太赫兹波系统得到了紧凑、强大光子激光器最新发展的补充,新研发的扫描设备使用新型微芯片激光器,能够以亚纳秒速度和高功率产生远红外激光脉冲,产生强烈的亚太赫兹发射,非常适合成像和分析工作。理化学研究所正在与专门从事电子、光学和光子学的日本公司(例如理光、拓普康、三菱电机和滨松光子学)进行联合研究,以开发无损检测应用和太赫兹波光谱设备。研究人员组装了一个太赫兹成像设备原型:一把可以发射塑料子弹的塑料枪,当隐藏在散射大量光线的凹凸不平的玻璃后面时,可以被清楚地检测到,还可以清楚地看到一把藏在厚皮包里的剪刀。由于特征性的“指纹”吸收模式,太赫兹波还可以揭示物质的化学成分。例如,用肉眼看起来相同的不同无色液体(例如煤油和丙酮)可以通过这种方法轻松识别。因此,太赫兹波的应用范围从机场安全扫描仪到历史艺术品的分析。与现有方法不同,还可以对工业油漆和外涂层进行分析,包括新车和药片等各种物质,而且是非破坏性的。未来还可以将设备安装在机器人上,沿着工业管道爬行以检查腐蚀情况,或者安装在无人机上以检查输电塔上的油漆。这些和其他用途可以让我们更好地了解材料如何相互作用和原位降解。例如,如果能够使用非破坏性技术更好地理解这些问题,就可以更轻松地实时调整生产流程,以提高效率并进行修补以延长结构的使用寿命。经济效益和环境效益应该是指数级的。...PC版:https://www.cnbeta.com.tw/articles/soft/1369733.htm手机版:https://m.cnbeta.com.tw/view/1369733.htm

封面图片

超快定时激光脉冲揭示更多量子材料的独特性能

超快定时激光脉冲揭示更多量子材料的独特性能光诱导的双极子对极子形成扭曲了准一维原子晶格,在伪间隙的形成过程中发挥了重要作用。资料来源:StevenBurrows/Murnane和Kapteyn小组当电子和声子强烈相互作用时,它们的行为就像"准"粒子,而不是单一的孤立粒子。这些相互作用以极短的时间尺度发生:电子之间的相互作用以飞秒(10-15秒)甚至更快的速度发生,而声子的反应则更慢,在数百飞秒内发生,因为较重的原子比电子移动得更慢。为了研究这些相互作用,科学家通常会改变材料的温度、压力或化学成分,并测量其电学特性,以了解这些相互作用。然而,承载不同相互作用的材料可能会表现出非常相似的特性,这就给精确定位这些相互作用的确切性质带来了挑战。为了克服这个问题,JILA研究生张颖超与JILA研究员HenryKapteyn和MargaretMurnane以及科罗拉多大学博尔德分校物理学教授RahulNandkishore合作,利用一种强大的新方法精确识别量子材料中的声子相互作用,研究成果发表在《纳米快报》(NanoLetters)杂志上。他们利用超精确、定时的激光脉冲和极紫外线脉冲,测量了响应时间,并精确地看到了电子和声子是如何相互作用的。这种方法为更好地控制和操纵量子材料铺平了道路。在这项新研究中,研究人员比较了两种不同材料((TaSe4)2I和Rb0.3MoO3,又称铷蓝青铜)中的电子在受到光的轻微扰动后的反应。这些材料之所以是一维(1D)材料,是因为如相应的图所示,它们沿一个方向具有强键,而在垂直方向上的键较弱。这就迫使电子和声子之间发生强烈的相互作用,使这些材料的特性非常依赖于量子现象。从历史上看,这两种材料都被认为有一个由电子和声子之间的耦合产生的小的绝缘间隙,称为极子。在试图理解极子内部的量子相互作用时,这种绝缘间隙会造成问题,因为要激发材料内部的任何相互作用变得十分困难。然而,与这项实验工作同时进行的斯坦福大学的一项最新研究表明,某些材料中的绝缘间隙可能是由极子相互作用产生双极子(或极子对)而产生的。由于小型双极子与玻色子(一种基本粒子)具有相似的性质,一些专家推测,双极子可能会产生一种玻色-爱因斯坦冷凝物(BEC),这可能是材料超导的一种机制。JILA和科罗拉多大学博尔德分校的研究人员指出,他们的实验可以在这种双极子情况下自然地得到解释,表明(TaSe4)2I材料是一种双极子绝缘体。Nandkishore解释说:"这是一个很好的例子,说明理论与实验的结合可以带来新的见解。"超越材料松弛时间为此,研究小组使用超快激光脉冲温和地激发两种材料中的若干电子。然后,使用波长比可见光短十倍的超快极紫外脉冲来准确观察电子被激发的能量和位置。通过跟踪激发电子的能量和位置,研究人员可以看到(TaSe4)2I中双极子熔化成单极子的特征。除了了解是什么相互作用导致了绝缘间隙,研究人员还观察到两种材料的弛豫时间不同。弛豫时间,即材料从应力、热或光中恢复所需的时间,根据材料内部的量子相互作用而变化。在(TaSe4)2I中,晶格中的原子需要重新排列,因为双极子会熔化成单极子。这个过程大约需要250飞秒,然后在1500飞秒内缓慢弛豫到双极子基态,如相应的图所示。Nandkishore补充说:"观察激发电子的位置并测量其弛豫时间的能力,为了解这些材料中的微观相互作用提供了新的视角,而传统的实验技术是无法做到这一点的。"相比之下,Rb0.3MoO3中的电子对光的反应和弛豫时间要快十倍(约60飞秒),这清楚地表明,电子之间的相互作用一定是这种一维材料产生绝缘间隙的原因。这种更快的弛豫时间似乎与一种不同的物理学理论(即卢廷格-液体理论)相吻合。在鲁丁格液体中,电子的运动更像是音乐会上的人群,而不是单个的电子。它们彼此强烈互动,形成一种集体行为。这种集体行为使液体像绝缘体一样,拒绝传导电流。这种由JILA和科罗拉多大学博尔德分校研究人员展示的新方法还可用于揭示其他材料(如超导体和二维材料)中量子准粒子相互作用的性质。"我们很高兴能够精确探测材料中电子、声子和自旋之间在基本时间尺度上的相互作用,从而揭示这些材料具有其特性的原因,并学习如何操纵它们,"Murnane说。编译自:ScitechDaily...PC版:https://www.cnbeta.com.tw/articles/soft/1424925.htm手机版:https://m.cnbeta.com.tw/view/1424925.htm

🔍 发送关键词来寻找群组、频道或视频。

启动SOSO机器人