仿生蜈蚣机器人可以根据地形自我适应 实现强大的稳定性

仿生蜈蚣机器人可以根据地形自我适应实现强大的稳定性试图创造生物仿生多腿机器人的研究人员经常发现,他们在挣扎。当一条腿因反复受力而出现故障时,会限制机器人的移动能力。而且控制大量的腿需要大量的计算机能力。现在,来自日本大阪大学的研究人员开发了他们自己的机器人myriapod,有六个部分,每个部分包含两条腿,并有灵活的关节。A.肌足类机器人。B.前视图。C.俯视图。D.俯视图该机器人长度为53英寸(135厘米),重量为20磅(9.1公斤)。它的六个独立的部分有一对连接的腿,由两个链接组成,通过灵活的关节连接,允许偏航或在不同方向移动。研究人员发现,增加关节的灵活性会导致"干草叉分叉",即直线行走变得不稳定。研究人员没有纠正这种不稳定性,而是更多地利用它,让机器人以一种弯曲的模式行走,要么向左,要么向右,就像蜈蚣那样。该研究的主要作者ShinyaAoi说:"我们的灵感来自于某些极其敏捷的昆虫的能力,这种能力使它们能够控制自身运动中的动态不稳定性,从而引起快速的运动变化。"描述机器人稳定和不稳定行走模式的图表研究人员发现,不直接操纵机器人而是控制其身体轴的灵活性,可以大大降低计算的复杂性和操作机器人所需的能量要求。在测试了机器人的运动后,他们发现它可以通过一条弯曲的路径到达目标。研究人员认为他们的机器人肌架有很多应用。该研究的共同作者之一MauAdachi说:"我们可以预见在各种各样的情况下的应用,如搜索和救援,在危险环境中工作或探索其他星球。"在未来,研究人员计划在更具挑战性的环境中测试他们的设计,例如在粗糙的地形上。这项研究发表在《软体机器人》杂志上,下面的视频由主要作者ShinyaAoi拍摄,展示了机器人在到达设定目标时的可操作性。...PC版:https://www.cnbeta.com.tw/articles/soft/1362471.htm手机版:https://m.cnbeta.com.tw/view/1362471.htm

相关推荐

封面图片

美国研制出适应崎岖路面的蜈蚣型机器人

美国研制出适应崎岖路面的蜈蚣型机器人根据这种设计思路,可望研制出适合农田作业和救灾等场合的新型搜救机器人。相关论文发表在新一期美国《科学》杂志上。研究人员用3D打印技术制造小型的机器人身体,每节身体都有2条腿并配备数台发动机,然后让腿数不同的机器人反复通过堆满小方块、高低不平的路面,从指定起点前往60厘米远处的终点。结果发现,仅有6条腿的机器人表现很不稳定,每次试验耗费的时间差异较大;而有14或16条腿的机器人通行更加快速,而且每次耗费的时间差不多。人类行走在崎岖环境中时必须小心观察,根据路面情况随时作出反应,对机器人来说这就意味着需要配备大量传感器,会大幅提高成本,而且传感器在恶劣环境中很容易损坏。新型机器人将运动分段处理,不需要根据传感器的实时探测来调整动作,更加高效实用。...PC版:https://www.cnbeta.com.tw/articles/soft/1358569.htm手机版:https://m.cnbeta.com.tw/view/1358569.htm

封面图片

日本团队制成由肌肉组织驱动的两足机器人

日本团队制成由肌肉组织驱动的两足机器人日本研究人员从人类步态中获得灵感,将实验室培养的肌肉组织和硅橡胶等人造材料结合在一起,制造了一款可以行走和旋转的两足机器人。该方法近日发表在细胞出版社旗下刊物《材料》杂志上。新华社报道,日本东京大学研究团队开发出的这款机器人是基于此前利用肌肉组织的生物混合机器人开发的,肌肉组织已可驱动机器人向前爬行、直线游泳和缓慢转弯,但不能急转弯,而能够旋转和急转弯是机器人避开障碍物所必需的特性。为了制造一个动作更精细灵活的机器人,研究人员以上述研究为基础,设计了一种模仿人类步态并能在水中操作的生物混合机器人。机器人有一个泡沫浮标顶部和两条加重的腿,能帮助它在水下直立。机器人的骨架主要由硅橡胶制成,可以弯曲和绷紧以适应肌肉运动。然后,研究人员将实验室培养的条状骨骼肌组织连接到硅橡胶和每条腿上。当研究人员用电流刺激肌肉组织时,这些肌肉收缩,从而让机器人抬起腿;当电流消散时,其脚后跟会向前移动并着地。通过每五秒钟在左右腿之间交替用电刺激,生物混合机器人成功地以每分钟5.4毫米的速度向前“行走”。如需要机器人转弯,研究人员每五秒钟反复电击右腿,同时左腿充当锚,最终机器人在62秒钟内完成了90度左转。研究结果表明,这种肌肉驱动的两足机器人可以行走、停止,并做出有规则的转弯动作。研究人员说,使用肌肉驱动可以让机器人结构更紧凑,并通过柔软的触感实现高效、无声的运动。日本东京大学研究团队还计划为两足机器人提供关节和更厚的肌肉组织,以实现更复杂、更有力的运动。2024年2月5日11:29AM

封面图片

工程人员实现让软体机器人运动的一种新方法

工程人员实现让软体机器人运动的一种新方法"毛毛虫的运动是由其身体的局部曲率控制的--当它把自己往前拉的时候,它的身体曲线与它把自己往后推的时候不同,"关于这项工作的一篇论文的通讯作者、北卡罗来纳州立大学机械和航空航天工程系安德鲁-亚当斯特聘教授朱勇说。"我们从毛虫的生物力学中获得灵感,模仿这种局部曲率,并使用纳米线加热器来控制毛虫机器人的类似曲率和运动。朱说:"设计能够在两个不同方向上移动的软体机器人是软体机器人技术的一个重大挑战。嵌入式纳米线加热器使我们能够以两种方式控制机器人的运动。我们可以通过控制软体机器人中的加热模式来控制机器人的哪些部分弯曲。而且我们可以通过控制施加的热量来控制这些部分弯曲的程度。"毛毛虫机器人由两层聚合物组成,它们在受热时反应不同。底层在受热时收缩,或者说收缩。顶层在受热时膨胀。一个银纳米线的图案被嵌入膨胀的聚合物层中。该图案包括研究人员可以施加电流的多个引线点。研究人员可以通过向不同的引出点施加电流来控制纳米线图案的哪些部分发热,并且可以通过施加更多或更少的电流来控制发热量。"我们证明了毛毛虫机器人能够将自己向前拉,并将自己向后推,"该论文的第一作者、北卡罗来纳州的博士后研究员ShuangWu说。"一般来说,应用的电流越大,它在任何一个方向上的移动速度就越快。然而,我们发现有一个最佳周期,它给了聚合物冷却的时间--有效地让'肌肉'在再次收缩之前放松。如果我们试图让毛毛虫机器人循环得太快,身体在再次收缩之前没有时间'放松',这就损害了它的运动。"研究人员还证明,毛毛虫机器人的运动可以被控制,以至于用户能够将其引导到一个非常低的缝隙下--类似于引导机器人滑到门下。从本质上讲,研究人员可以控制向前和向后的运动,以及机器人在该过程中的任何一点向上弯曲的高度。"这种在软体机器人中驱动运动的方法是高度节能的,我们有兴趣探索如何使这个过程更加有效,"朱说。"接下来的其他步骤包括将这种软体机器人运动的方法与传感器或其他技术相结合,以用于各种应用--如搜索和救援设备。"...PC版:https://www.cnbeta.com.tw/articles/soft/1358717.htm手机版:https://m.cnbeta.com.tw/view/1358717.htm

封面图片

等离子体显示出的不稳定性彻底改变了学界对宇宙射线的认识

等离子体显示出的不稳定性彻底改变了学界对宇宙射线的认识波茨坦莱布尼兹天体物理研究所(AIP)的科学家们发现了一种新的等离子体不稳定性,有望彻底改变我们对宇宙射线起源及其对星系动态影响的认识。上世纪初,维克多-赫斯发现了一种名为宇宙射线的新现象,并因此获得了诺贝尔奖。他进行了高空气球飞行,发现地球大气层并没有被地面的放射性电离。相反,他证实了电离的起源是地外的。随后,人们确定宇宙"射线"是由来自外太空以接近光速飞行的带电粒子组成,而不是辐射。不过,"宇宙射线"这一名称在这些发现之后才被使用。在这项新研究中,AIP的科学家、本研究的主要作者MohamadShalaby博士及其合作者进行了数值模拟,跟踪许多宇宙射线粒子的轨迹,研究这些粒子如何与周围由电子和质子组成的等离子体相互作用。模拟宇宙射线逆流撞击背景等离子体并激发等离子体不稳定性。图中显示的是对宇宙射线流做出反应的背景粒子在相空间中的分布,相空间由粒子位置(横轴)和速度(纵轴)跨度构成。颜色直观地显示了粒子的数量密度,而相空间空洞则体现了不稳定性的高度动态性,它将有序运动消散为随机运动。资料来源:Shalaby/AIP当研究人员对从模拟的一侧飞向另一侧的宇宙射线进行研究时,他们发现了一种在背景等离子体中激发电磁波的新现象。这些波对宇宙射线施加了一种力,从而改变了它们的缠绕路径。将宇宙射线理解为集体现象最重要的是,如果我们不把宇宙射线看作是单独的粒子,而是看作是支持一种集体电磁波,就能最好地理解这种新现象。当这种电磁波与背景中的基波相互作用时,这些基波会被强烈放大,并发生能量转移。AIP宇宙学与高能天体物理学部主任克里斯托夫-普夫罗默(ChristophPfrommer)教授说:"这一洞察力使我们能够将宇宙射线视为辐射,而不是单个粒子。"质子(虚线)和电子(实线)的动量分布。图中显示的是电子在运动较慢的冲击波中出现的高能量尾部。这是与新发现的等离子体不稳定性(红色)产生的电磁波相互作用的结果,而在速度较快的冲击波(黑色)中则没有这种电磁波。由于只有高能电子才会产生可观测到的射电辐射,这表明了解加速过程的物理学原理非常重要。资料来源:Shalaby/AIP"对于这种行为,一个很好的比喻是单个水分子共同形成的波浪冲向海岸。"MohamadShalaby博士解释说:"只有考虑到以前被忽视的较小尺度,并质疑在研究等离子体过程时使用有效流体力学理论,才能取得这一进展。"影响和应用这种新发现的等离子体不稳定性有很多应用,包括首次解释了热星际等离子体中的电子如何在超新星残骸中被加速到高能量。穆罕默德-沙拉比(MohamadShalaby)报告说:"这一新发现的等离子体不稳定性是我们对加速过程理解的重大飞跃,并最终解释了为什么这些超新星残骸在射电和伽马射线中闪闪发光。"此外,这一突破性发现为我们更深入地了解宇宙射线在星系中传输的基本过程打开了大门,而这正是我们了解星系在宇宙演化过程中形成过程的最大谜团。参考文献《解密中间尺度不稳定性的物理基础》,作者:MohamadShalaby、TimonThomas、ChristophPfrommer、RouvenLemmerz和VirginiaBresci,2023年12月12日,《等离子体物理学杂志》。doi:10.1017/s0022377823001289"MohamadShalaby、RouvenLemmerz、TimonThomas、ChristophPfrommer合著的《平行非相对论冲击下电子高效加速的机制》,2022年5月4日,《天体物理学》(Astrophysics)>《高能天体物理现象》(HighEnergyAstrophysicalPhenomena)。arXiv:2202.05288《新的宇宙射线驱动不稳定性》,作者:MohamadShalaby、TimonThomas和ChristophPfrommer,2021年2月24日,《天体物理学报》。DOI:10.3847/1538-4357/abd02d编译来源:ScitechDaily...PC版:https://www.cnbeta.com.tw/articles/soft/1404869.htm手机版:https://m.cnbeta.com.tw/view/1404869.htm

封面图片

蚂蚁启发的仿生机器人群可齐心协力冲出“监狱”

蚂蚁启发的仿生机器人群可齐心协力冲出“监狱”从某种意义上说,蚁群是在算法上运行的--单个蚂蚁不会专门思考一项任务,但它们遵循一套本能的规则,指导它们完成复杂的工程壮举,如挖掘隧道网络或建造桥梁。它们利用触角和信息素轨迹相互交流。哈佛大学的研究小组首先进行了一项实验,将一小群蚂蚁放在一个特别设计的栏里,这是一个由柔软的沙墙包围的圆形陷阱,以观察它们如何合作逃生。起初,这些蚂蚁都是随意地四处游荡,但很快一些蚂蚁就开始在分散的地方挖掘墙壁。随着时间的推移,研究小组发现,这些蚂蚁放弃了单独的挖掘,而是聚集在一起,更有效地在一条隧道上工作,直到它们最终成功突围。根据他们的观察,研究人员对正在发生的事情建立了数学模型。当蚂蚁们相互碰撞时,它们会通过它们的触角进行交流。随着时间的推移,它们会开始偏爱那些它们更经常互动的区域,从而形成一个反馈回路,使它们越来越多地聚集在这些地方。这带动它们集中精力在一个地方挖掘,直到它们突破,而不是每只蚂蚁都挖自己的隧道。有了这个模型,该团队随后着手建造遵循类似规则的机器人。他们的机器人蚂蚁,他们称之为RAnts,没有发出化学信息素,但留下了光场,或"光激素",机器人经过的次数越多,光场就越亮。RAnts被编程为遵循三个简单的规则:它们必须遵循光场的梯度,在光场密度高的地方避开其他机器人,在密度高的地方捡起障碍物并将它们移到密度低的地方。果然,这些规则允许RAnts以与蚂蚁实验大致相同的方式进行合作。当把它们放在自己的畜栏里,周围有几圈小障碍物时,这些机器人很快就发现最好的逃跑计划是一起合作,集中在一个地方。这种技术对于设计能够通过合作完成复杂任务的简单机器人群来说可能是至关重要的,而且还有很多其他受蚂蚁启发的机器人的例子在那里。该团队表示,这有可能被扩展到几十个或几百个机器人,用于一系列的使用案例,还有一个额外的好处是,即使有几个机器人坏掉了,整个团队仍然可以完成工作。"我们展示了合作完成任务是如何从简单的规则中产生的,类似的这种行为规则可以应用于解决其他复杂的问题,如建筑、搜救和防御,"该研究的共同主要作者SGangaPrasath说。这项研究发表在《eLife》杂志上。...PC版:https://www.cnbeta.com.tw/articles/soft/1335985.htm手机版:https://m.cnbeta.com.tw/view/1335985.htm

封面图片

人工智能聊天机器人被用来越狱其它人工智能

人工智能聊天机器人被用来越狱其它人工智能现代聊天机器人有能力通过伪装特定性格或像虚构人物一样行事来扮演角色。新研究利用了这一能力,要求一个特定的人工智能聊天机器人充当研究助手。然后,研究人员指示这个助手帮助开发可以“越狱”其他聊天机器人的提示语。事实证明,研究助理聊天机器人的自动攻击技术在42.5%的时间内成功地攻击了GPT-4,对Claude2的攻击有61%的成功率,对开源聊天机器人Vicuna的攻击有35.9%的成功率。研究人员称,这种助理聊天机器人提升了25倍的越狱效率。来源,频道:@kejiqu群组:@kejiquchat

🔍 发送关键词来寻找群组、频道或视频。

启动SOSO机器人