耶鲁大学研究人员发现治疗癌症的新方法

耶鲁大学研究人员发现治疗癌症的新方法一项新的研究表明,带有额外染色体的癌细胞依靠这些额外染色体来生长肿瘤,而移除这些额外染色体可以阻止肿瘤的形成。这项研究为选择性地针对这些额外染色体治疗癌症开辟了一条潜在的新途径。"人体细胞通常有23对染色体;额外的染色体是一种异常,被称为非整倍体。"耶鲁大学医学院外科助理教授、该研究的资深作者杰森-谢尔特泽(JasonSheltzer)说:"以正常皮肤或正常肺组织为例,99.9%的细胞都有正确的染色体数目。但我们100多年前就知道,几乎所有癌症都是非整倍体。"然而,我们还不清楚多余的染色体在癌症中扮演什么角色--例如,它们是导致癌症还是由癌症引起的。"长期以来,我们可以观察到非整倍体,但无法对其进行操作。我们只是没有合适的工具,"身兼耶鲁大学癌症中心研究员的谢尔特泽说。"但在这项研究中,我们利用基因工程技术CRISPR开发出了一种新方法,可以消除癌细胞中的整条染色体,这是一项重要的技术进步。能够以这种方式操纵非整倍体染色体,将使我们对它们的功能有更深入的了解"。这项研究由实验室前成员VishruthGirish和AsadLakhani共同领导,VishruthGirish现在是约翰霍普金斯医学院的博士生,AsadLakhani现在是冷泉港实验室的博士后研究员。研究人员利用他们新开发的方法--他们称之为"利用CRISPR靶向技术恢复非整倍体细胞中的非整倍体"(RestoringDisomyinAneuploidcellsusingCRISPRTargeting),或称"ReDACT"--靶向黑色素瘤、胃癌和卵巢细胞系中的非整倍体。具体来说,他们切除了1号染色体长部分(也称为"q臂")的第三个异常拷贝,这种异常拷贝存在于几种癌症中,与疾病进展有关,并且发生在癌症发展的早期。当我们消除这些癌细胞基因组中的非整倍体时,就会削弱这些细胞的恶性潜能,使它们丧失形成肿瘤的能力。基于这一发现,研究人员提出癌细胞可能有"非整倍体"的偏好--这一名称参考了早先的研究,该研究发现消除癌基因(可将细胞转化为癌细胞)会破坏癌细胞形成肿瘤的能力。这一发现催生了一种被称为"癌基因成瘾"的癌症生长模型。在研究额外的1q染色体拷贝如何促进癌症时,研究人员发现,当多个基因过度表达时,它们会刺激癌细胞生长--因为它们在三条染色体上编码,而不是典型的两条染色体。某些基因的过量表达也让研究人员发现了一个漏洞,利用这个漏洞,他们可能会将目标锁定在非整倍体癌症上。以前的研究表明,1号染色体上编码的一个名为UCK2的基因是激活某些药物所必需的。在新的研究中,Sheltzer和他的同事发现,由于UCK2的过度表达,具有额外1号染色体拷贝的细胞比只有两个拷贝的细胞对这些药物更敏感。此外,他们还观察到,这种敏感性意味着药物可以改变细胞进化的方向,使其远离非整倍体,从而使细胞群体的染色体数目正常,因此癌变的可能性较小。当研究人员制造一种含有20%非整倍体细胞和80%正常细胞的混合物时,非整倍体细胞占据了上风:九天后,它们占到混合物的75%。但当研究人员将20%的非畸形细胞混合物暴露在一种依赖UCK2的药物中时,9天后,非畸形细胞只占混合物的4%。谢尔特泽说:"这告诉我们,非整倍体细胞有可能成为癌症的治疗靶点。几乎所有癌症都是非整倍体,因此,如果有办法选择性地靶向那些非整倍体细胞,那么从理论上讲,这可能是一种靶向癌症的好方法,同时对正常的非癌组织影响最小。"在这种方法进行临床试验之前,还需要进行更多的研究。但谢尔策的目标是将这项工作推进到动物模型中,评估更多的药物和其他非整倍体,并与制药公司合作推进临床试验。谢尔特泽说:"我们对临床转化非常感兴趣。因此我们正在考虑如何将我们的发现向治疗方向拓展。"...PC版:https://www.cnbeta.com.tw/articles/soft/1380265.htm手机版:https://m.cnbeta.com.tw/view/1380265.htm

相关推荐

封面图片

研究人员首次发现癌细胞抵抗化疗的机制

研究人员首次发现癌细胞抵抗化疗的机制研究人员首次观察到癌细胞如何通过破坏微管(绿色)来抵抗旨在阻止细胞分裂的化疗。但癌细胞非常狡猾,它们已经开发出了确保治疗并非总是有效的方法。现在,新南威尔士大学悉尼分校的研究人员首次观察到了癌细胞抵抗化疗效果的一种机制。该研究的通讯作者彼得-冈宁(PeterGunning)说:"抗微管化疗通常会将机械臂分解成多个枢纽,将染色体拉向多个方向,而不是正常的两个方向。由此产生的混乱阻碍了染色体向两个子细胞的正常分离,并诱导细胞凋亡或程序性细胞死亡"。研究人员发现,癌细胞利用一种巧妙的技术继续分裂,从而避免了化疗的影响。冈宁说:"我们发现,癌细胞利用细胞边缘(称为细胞皮质)提供的机械力来克服常用化疗的影响,因为化疗会阻碍细胞在分裂过程中分离染色体的能力。"当微管发生断裂时,癌细胞会激活一个信号,使"臂"伸向细胞边缘,拉动细胞皮层,使断裂的微管重新组合在一起。这使得臂能够稳定下来,并产生必要的力量,以物理方式抓住染色体并将其拉入每个子细胞,确保癌细胞的繁殖。研究人员在注意到一种用于治疗神经母细胞瘤(一种儿童癌症)的特定微管靶向药物增强了化疗效果后,怀疑这种机制的存在。但是,在他们之前的研究中,成像技术还不够先进,无法证实他们的猜测。"我们需要对癌细胞进行细胞分裂时的良好成像,以便实时观察染色体、微管和细胞结构发生了什么变化,"冈宁说。"这让我们相当惊讶,因为我们没想到癌细胞的这种机制会以这种方式被用来克服癌症疗法,但我们可以看到它在我们眼前发生。"大剂量化疗通常能有效阻止癌细胞分裂。然而,在剂量较低的情况下--比如说,当病人出现化疗毒性而需要减少剂量时,细胞就可以利用这种天生的生存机制,研究人员认为这是细胞生物学的一个基本组成部分。冈宁说:"我们认为这是一种后备机制,它的进化使任何细胞都能克服少量的微管破坏,并确保其能够存活。恰巧癌细胞利用它避开了抗微管化疗"。研究人员正致力于开发与当前化疗药物联合使用的药物,以关闭抗药性机制。"通过攻击癌细胞建立的力量生成机制,我们希望能够让癌症疗法更有效地发挥作用,"冈宁说。"实际上,我们已经成立了一家公司,能够开发出攻击这种救援机制所需的药物,使抗微管化疗能够更有效地发挥作用,并有望改善患者的预后。"这项研究发表在《当代生物学》(CurrentBiology)杂志上。...PC版:https://www.cnbeta.com.tw/articles/soft/1391933.htm手机版:https://m.cnbeta.com.tw/view/1391933.htm

封面图片

解码癌症:研究人员揭示细胞是如何"叛变"的

解码癌症:研究人员揭示细胞是如何"叛变"的访问:NordVPN立减75%+外加3个月时长另有NordPass密码管理器约翰斯-霍普金斯大学医学院的科学家们绘制了人类乳腺和肺细胞中的一条分子途径,它可能导致基因组过度复制,而这正是癌细胞的一个特征。这些发现最近发表在《科学》杂志上,揭示了当一组分子和酶触发并调节所谓的"细胞周期"(用细胞的遗传物质制造新细胞的重复过程)时,会出现什么问题。研究人员认为,这些发现可用于开发中断细胞周期障碍的疗法,并有可能阻止癌症的生长。为了复制,细胞会遵循一个有序的程序,首先复制整个基因组,然后分离基因组副本,最后将复制的DNA平均分成两个"子"细胞。人类细胞的每对染色体有23对--一半来自母亲,一半来自父亲,包括性染色体X和Y--即总共46对,但已知癌细胞会经历一个中间状态,即拥有双倍的数量--92条染色体。这是如何发生的是一个谜。约翰霍普金斯大学医学院分子生物学和遗传学副教授塞尔吉-雷戈特(SergiRegot)博士说:"癌症领域科学家们的一个永恒问题是:癌细胞基因组是如何变得如此糟糕的?我们的研究对细胞周期的基础知识提出了挑战,让我们重新评估了关于细胞周期如何调节的想法"。细胞周期调控面临的挑战雷戈特说,复制基因组后受到压力的细胞会进入休眠或衰老阶段,并错误地冒着再次复制基因组的风险。一般来说,这些休眠细胞在被免疫系统"识别"为有问题的细胞后,最终会被清除。但有时,尤其是随着年龄的增长,免疫系统无法清除这些细胞。如果任由这些异常细胞在体内游荡,它们就会再次复制基因组,在下一次分裂时对染色体进行洗牌,从而引发癌症。为了确定细胞周期中出现问题的分子途径的细节,雷戈特和研究生研究助理康纳-麦肯尼(ConnorMcKenney)领导约翰-霍普金斯大学的研究小组,重点研究了乳腺导管和肺组织中的人类细胞。原因何在?这些细胞的分裂速度通常比体内其他细胞更快,从而增加了观察细胞周期的机会。观看这段视频,了解细胞在不分裂的情况下经历两次复制基因组的细胞周期阶段。细胞核中出现的亮点表明DNA正在复制的位置。资料来源:约翰-霍普金斯大学医学院塞尔吉-雷戈特实验室雷戈特的实验室擅长对单个细胞进行成像,因此特别适合发现极少数没有进入休眠期、继续复制基因组的细胞。在这项新研究中,研究小组仔细观察了数千张单细胞在细胞分裂过程中的图像。研究人员开发了发光生物传感器,用于标记细胞周期蛋白依赖性激酶(CDKs)。他们发现,各种CDK在细胞周期的不同时期激活。在细胞受到环境压力(如干扰蛋白质生产的药物、紫外线辐射或所谓的渗透压(细胞周围水压的突然变化))后,研究人员发现CDK4和CDK6的活性降低了。细胞周期破坏的研究结果五到六小时后,当细胞开始准备分裂时,CDK2也受到了抑制。此时,一种名为无丝分裂促进复合物(APC)的蛋白质复合物在细胞分裂前的阶段被激活,这一步骤被称为有丝分裂。Regot说:"在研究中的受压环境中,APC激活发生在有丝分裂之前,而通常人们只知道它在有丝分裂过程中激活。"当暴露在任何环境压力下时,约90%的乳腺细胞和肺细胞会离开细胞周期,进入安静状态。在他们的实验细胞中,并非所有细胞都安静了下来。研究小组发现,约有5%-10%的乳腺细胞和肺细胞重返细胞周期,再次分裂染色体。通过另一系列实验,研究小组发现,所谓的应激活化蛋白激酶活性的增加与一小部分细胞脱离安静阶段并继续将基因组翻倍有关。雷戈特说,目前正在进行一些临床试验,测试DNA损伤剂与阻断CDK的药物。联合用药有可能促使一些癌细胞将基因组复制两次,产生异质性,最终产生抗药性。也许有药物可以阻止APC在有丝分裂前激活,从而防止癌细胞二次复制基因组,防止肿瘤阶段性进展。编译来源:ScitechDaily...PC版:https://www.cnbeta.com.tw/articles/soft/1431442.htm手机版:https://m.cnbeta.com.tw/view/1431442.htm

封面图片

耶鲁大学科学家发现减少细胞疗法中"友军误伤"的新方法

耶鲁大学科学家发现减少细胞疗法中"友军误伤"的新方法在CAR-T疗法中,蓝色的T细胞会发现抗原(红色)并杀死癌细胞(紫色)。但抗原往往会附着在其他T细胞上,导致其他T细胞攻击它们的兄弟姐妹。图片来源:Xiaoyu(Ariel)Zhou然而,这种目前已被批准用于治疗白血病和淋巴瘤的疗法有一个很大的缺点。在消灭癌细胞的过程中,许多工程T细胞会被残留的癌症抗原污染,导致它们攻击其他T细胞。这最终会导致体内抗癌细胞数量减少,为癌症复发打开大门。然而,耶鲁大学的一项新研究发现了一种驯服这些杀伤性T细胞自我毁灭倾向的方法。研究人员说,只需在用于治疗的工程T细胞上融合一个分子尾翼,就能抑制它们相互攻击的倾向。这项研究于7月27日发表在《自然-免疫学》(NatureImmunology)杂志上。这项研究的资深作者、耶鲁大学医学院遗传学副教授西迪-陈(SidiChen)说:"这就像一把利剑在完成它的使命后又重新出鞘。"在这项研究中,由共同第一作者周晓宇和曹寒冰领导的耶鲁大学团队将CTLA-4细胞质尾部(CCTs)与工程化CART细胞融合。CCTs是天然存在的人类蛋白质CTLA-4的一部分,众所周知,CTLA-4通过调节T细胞来控制免疫系统。研究人员观察到,与没有尾部的CART细胞相比,融合了这些尾部的细胞耗竭更少,存活时间更长。陈博士实验室的博士后周说:"带有工程化尾巴的CART细胞在杀死癌细胞时反应较小,但更持久。对现有公司来说,将CCTs与CART细胞融合相对容易,而且治疗方法的改进可能有助于将治疗范围扩大到实体瘤。"...PC版:https://www.cnbeta.com.tw/articles/soft/1374211.htm手机版:https://m.cnbeta.com.tw/view/1374211.htm

封面图片

科学家利用CRISPR基因编辑消除了癌细胞中多余的染色体

科学家利用CRISPR基因编辑消除了癌细胞中多余的染色体具有额外染色体的细胞与癌症的发展有关,但一项新的研究发现这也可能是它们的弱点该研究的高级作者JasonSheltzer说:"长期以来,我们可以观察到非整倍体,但不能操纵它。我们只是没有合适的工具。但在这项研究中,我们利用基因工程技术CRISPR开发了一种新的方法来消除癌细胞中的整个染色体,这是一个重要的技术进步。能够以这种方式操纵非整倍体染色体,将使我们更深入地了解它们的功能。"首先,该团队专注于一种非整倍体,即细胞在1号染色体上获得一个被称为"q臂"的结构的第三个拷贝。这种错误从早期阶段就在多种癌症类型中发现,并与疾病的发展有关。研究人员开发了一种工具,他们称之为使用CRISPR靶向技术恢复非整倍体细胞中的二分裂(ReDACT),当他们用它来消除这些额外的染色体时,他们发现这些细胞失去了形成恶性肿瘤的能力。经过仔细检查,他们发现了一种机制,即非整倍体可能会促进癌症的发展--刺激癌症生长的特定基因被编码在三条染色体上,而不是通常的两条。接下来,研究小组测试了这种机制是否可以作为癌症的治疗目标加以利用。一个被称为UCK2的基因先前已被发现对某些药物敏感,这里的研究人员发现,这使得具有1号染色体额外拷贝的细胞(因此是UCK2的第三个拷贝)对这些药物更加敏感。研究小组将正常细胞和非整倍体细胞混合成批,后者占细胞的20%。他们发现,在没有干预的情况下,非整倍体细胞将在9天后增长到占批次的75%。但当用针对UCK2的药物治疗时,非整倍体细胞在9天后下降到仅占该批细胞的4%。Sheltzer说:"这告诉我们,非整倍体可以作为癌症的一个治疗目标。几乎所有的癌症都是非整倍体,所以如果你有某种方法选择性地针对那些非整倍体细胞,理论上这可能是一种针对癌症的好方法,同时对正常的、非癌症的组织影响最小。"当然,这项研究仍然处于非常早期的阶段,到目前为止只在培养的细胞中进行了测试。但这是一个耐人寻味的想法,最终可能开启新的癌症治疗方法,而且该团队现在正在努力转向动物测试。这项研究发表在《科学》杂志上。...PC版:https://www.cnbeta.com.tw/articles/soft/1370003.htm手机版:https://m.cnbeta.com.tw/view/1370003.htm

封面图片

癌症的弱点被发现:新方法将癌细胞诱导到缓解期

癌症的弱点被发现:新方法将癌细胞诱导到缓解期研究人员用小鼠来展示他们治疗卵巢癌的创新精准医学方法。此外,揭示这些弱点的细胞行为在大多数癌症中都很常见,这意味着这些算法可能为各种癌症产生优越的治疗计划。密歇根大学生物医学工程博士研究员AbhinavAchreja和生物医学工程博士副教授DeepakNagrath在北校园研究中心(NCRC)的生物工程实验室从事卵巢癌细胞研究。信"这可能会彻底改变精准医疗领域,因为靶向药物只会影响和杀死癌细胞,而放过正常细胞,"密歇根大学生物医学工程副教授、发表在《自然-代谢》上的这项研究的高级作者DeepakNagrath说。"大多数抗癌药物会影响正常组织和细胞。然而,我们的策略允许具体针对癌细胞"。这种方法被称为附带致死性,它涉及利用从癌细胞抛弃的基因中获得的信息来识别其弱点。人体配备了各种防御癌症的措施。癌细胞过去有抑制性基因,防止它们扩散。然而,这些细胞有一个聪明的应对策略;它们只是删除了包含这些抑制基因的一部分DNA。在这样做时,细胞通常会失去其他生存所需的基因。为了避免死亡,细胞会找到一个类似物--可以发挥类似功能的基因。通常,有一个或可能有两个基因可以介入并执行相同的功能以保持细胞的活力。如果医学家能确定正确的类属基因,并以关闭其对细胞的重要功能的方式将其作为目标,会怎么样呢?"当没有被删除的代谢基因的直接替代物时,我们的算法使用癌细胞代谢的数学模型来预测它们可能使用的旁系代谢途径,"U-M生物医学工程的研究员和研究论文的主要作者AbhinavAchreja说。"这些代谢途径对癌细胞很重要,可以有选择地将其作为目标"。攻击代谢途径本质上是关闭了细胞的能量来源。在检查卵巢癌细胞时,马萨诸塞州大学的研究小组将目标锁定在一个基因上,即UQCR11,该基因经常与一个抑制性基因一起被删除。UQCR11在细胞呼吸中起着至关重要的作用--细胞为了生存而分解葡萄糖获得能量。这一过程的紊乱会导致线粒体中一种重要的代谢物NAD+的严重失衡,而线粒体是细胞进行呼吸的地方,尽管困难重重,卵巢癌细胞仍然依靠它们的备份计划而继续茁壮成长。马萨诸塞大学的算法正确地梳理了多种选择,并成功地预测出缺少UQCR11的细胞将转向基因MTHFD2作为其NAD+的备份供应一方。印第安纳大学医学院的研究人员在实验室中帮助验证了这些发现。这个由医学教授XiongbinLu领导的团队开发了带有缺失的卵巢癌的基因改造细胞和动物模型。测试的六只小鼠中,有六只显示出癌症大大缓解的情形。...PC版:https://www.cnbeta.com.tw/articles/soft/1334157.htm手机版:https://m.cnbeta.com.tw/view/1334157.htm

封面图片

潜在的危险:研究称CRISPR疗法可能会促进癌症的发生

潜在的危险:研究称CRISPR疗法可能会促进癌症的发生特拉维夫大学的研究人员日前警告说:“CRISPR基因组编辑方法非常有效,但不一定安全。有时被裂解的染色体不会恢复,基因组的稳定性受到影响--从长远来看,这可能会促进癌症的发生。”根据特拉维夫大学最近的研究,使用CRISPR疗法--一种新的、获得诺贝尔奖的技术,需要裂解和编辑DNA,来治疗包括癌症、肝脏和肠道疾病以及遗传综合症在内的疾病,会带来危害。研究人员观察了这种技术如何影响T细胞,即免疫系统中的白血球,并发现高达10%的被处理细胞失去了遗传物质。他们解释说,这种损失可能导致基因组的不稳定,从而可能导致癌症。特拉维夫大学的Wise生命科学学院和Dotan高级治疗中心的AdiBarzel博士领导了这项研究,该研究是特拉维夫苏拉斯基医疗中心(Ichilov)和特拉维夫大学之间的合作,以及TAU医学院和EdmondJ.Safra生物信息学中心的AsafMadi博士和UriBen-David博士。这项研究最近发表在著名科学杂志《自然-生物技术》上。CRISPR是一种革命性的DNA编辑技术,它在特定的位置裂解DNA序列,以消除不需要的片段或修复或引入有益的片段。这种方法大约在十年前开发,已经证明在治疗各种疾病方面相当成功,包括癌症、肝病、遗传综合症等等。第一个使用CRISPR的授权临床研究于2020年在宾夕法尼亚大学进行,当时研究人员将该技术应用于T细胞--免疫系统的白血细胞。使用来自捐赠者的T细胞,科学家们创造了一个针对癌细胞的工程受体,同时使用CRISPR破坏了编码原始受体的基因,否则这些基因会促使T细胞攻击接受者体内的细胞。在本研究中,研究人员试图研究CRISPR疗法的潜在好处是否可能被裂解本身造成的风险所抵消,假设破碎的DNA并不总是能够恢复。Ben-David博士和他的研究助理EliReuveni解释说:“我们细胞中的基因组经常由于自然原因而断裂,但通常它能够自我修复,不会造成伤害。不过,有时某条染色体还是无法反弹,大段的,甚至是整个染色体都会丢失。这种染色体的中断会破坏基因组的稳定性,我们经常在癌细胞中看到这种情况。因此,CRISPR疗法,即故意裂解DNA作为治疗癌症的手段,在极端情况下,可能实际上会促进恶性肿瘤的发生。”为了检查潜在损害的程度,研究人员重复了2020年宾夕法尼亚州的实验,在完全相同的位置--2号、7号和14号染色体(人类基因组的23对染色体)上裂解T细胞的基因组。使用一种称为单细胞RNA测序的最先进技术,他们分别分析每个细胞,并测量每个细胞中每个染色体的表达水平。通过这种方式,在一些细胞中检测到了遗传物质的明显损失。例如,当14号染色体被裂解时,约有5%的细胞显示该染色体很少或没有表达。当所有的染色体同时被切割时,损伤增加,分别有9%、10%和3%的细胞无法修复14号、7号和2号染色体的断裂。然而,这三条染色体在遭受损害的程度上确实有所不同。Madi博士和他的学生EllaGoldschmidt解释说:“单细胞RNA测序和计算分析使我们能够获得非常精确的结果。我们发现,造成损害差异的原因是...PC版:https://www.cnbeta.com/articles/soft/1314173.htm手机版:https://m.cnbeta.com/view/1314173.htm

🔍 发送关键词来寻找群组、频道或视频。

启动SOSO机器人